Wissenschaftliche Einrichtung Chemie

Modulhandbuch

für den

Masterstudiengang Chemie (M. Sc.)

(Stand: 03.04.2024)

Inhaltsverzeichnis

Studienverlaufsplan Master	1
Mit Start im Wintersemester	1
Mit Start im Sommersemester	2
Module des Instituts für Anorganische Chemie und Strukturchemie	3
Pflichtmodule	3
Pflichtmodul Anorganische Chemie (AC)	3
Pflichtpraktikum Anorganische Chemie (AC-P)	5
Wahlpflichtmodule	6
Crystallographic software for chemists (CrystSoft)	6
Vertiefte Aspekte aus Carben-Chemie und NMR-Spektroskopie (NHC-NMR)	8
Nanochemie (NanoChem)	10
Chemische Kristallographie (ChemKrist)	11
Anorganische Photoaktive Materialien I - Grundlagen (PhotMat I)	13
Anorganische Photoaktive Materialien II - Anwendungen (PhotMat II)	15
Forschungsmodul in Anorganischer Chemie (FAC)	17
Module des Instituts für Biochemie	18
Wahlpflichtmodule	18
Proteinkatalysierter Membrantransport (MT)	18
From gene to in silico structure – the use of protein data bases (ISS)	20
Physics and Biology of Protein Folding in Cellular Membranes	22
Vom Gen zum biotechnologischen Produkt (GenProd)	24
Molekulare Enzymologie (ME)	26
Biogenesis and Transport of Membrane Proteins (BTMP)	28
Module des Instituts für Bioorganische Chemie	30
Wahlpflichtmodule	30
Biochemie der Naturstoffe (NatStoff-BC)	30
Optimierungsverfahren in der Proteinherstellung (OptiProt)	32
Naturstoffsynthese I (NATSY 1)	33
Naturstoffsynthese II (NATSY 2)	34
Module des Instituts für Organische Chemie und Makromolekulare Chemie	35
Pflichtmodule	35
Pflichtmodul Organische Chemie (MoPoS)	35
Pflichtpraktikum Organische Chemie (MoPoS-P)	37
Wahlpflichtmodule	38
Angewandte Makromolekulare Chemie: a) großtechnische Prozesse b) Polymere als Werkstoffe und Wirkstoffe	38

Multikomponenten- und Dominoreaktionen (MCR)	40
Synthese und Katalyse (SynKat)	42
Angewandte Organische Chemie (AOC)	44
Wahlpflichtmodul in Organischer Chemie (WOC)	46
Elektrosynthese (ElSyn)	47
Enantioselektive Katalyse (EnKat)	49
Stereoselektive Synthese (SSSyn)	51
Module des Instituts für Physikalische Chemie	53
Pflichtmodule	53
Pflichtmodul Physikalische Chemie (SMKS-V)	53
Pflichtpraktikum Physikalische Chemie (SMKS-P)	55
Wahlpflichtmodule	56
Grundlagen der Umweltchemie (GUC)	56
Laserspektroskopische Techniken (LST)	58
Grundlagen der Nanooptik (GNO)	60
Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden (SSPK)	62
Femtosekunden-Spektroskopie chemischer und biologischer Prozessse (FSCB)	64
Präperative und spektroskopische Aspekte der organischen Photochemie (PSP)	66
Theorie und Simulation chemischer Reaktionen (TSCR)	68
Forschungsmodul in molekularer physikalischer Chemie (FMPC)	70
Forschungsmodul Physikalische Chemie (FoPC)	72
Module des Instituts für Theoretische Chemie und Computerchemie	73
Wahlpflichtmodule	73
Angewandte Quanten- und Computerchemie (AnQCCC)	73
Fortgeschrittene Quantenchemie (FQC)	75
Wahlpflichtmodul relativistische Quantenchemie (Rela)	77
Wahlpflichtmodul Dynamik mit QM/MM-Verfahren (Dyn)	79
Simulation von Biomolekülen (BioSim)	81
Spezialisierungspflichtmodule	83
Erläuterungen zur Platzvergabe in den Spezialisierungspflichtmodulen	83
Advanced Materials	84
Advanced Materials (AdMat-V)	84
Advanced Materials (AdMat-P)	86
Molecular and Biomolecular Catalysis	87
Molecular and Biomolecular Catalysis (MoBiCa-V)	87
Molecular and Biomolecular Catalysis (MoBiCa-P)	89
Molecular Photonics and Excited-State Processes	90

	Molecular Photonics and Excited-State Processes (MPESP)	90
	Molecular Photonics and Excited-State Processes (MPESP-P)	92
Mas	terarbeit	94
	Masterarbeit	94
	Mastervortrag	95

Studienverlaufsplan Master

Mit Start im Wintersemester

1. Semester	2. Semester	3. Semester	4. Semester
Anorganische Chemie AC (9 LP)	Organische Chemie MoPoS (9 LP)	Wahlpflicht 1 (8 LP)	Masterarbeit (25 LP)
Praktikum Anorganische Chemie AC-P (5 LP)	Praktikum Organische Chemie MoPoS-P (5 LP)	Wahlpflicht 2 (8 LP)	
Physikalische Chemie SMKS-V (9 LP)	Spezialisierungs- pflichtmodul (9 LP)	Wahlpflicht 3 (8 LP)	
Praktikum Physikalische Chemie SMKS-P (5 LP)	Praktikum Spezialisierungs- pflichtmodul (7 LP)	Wahlpflicht 4 (8 LP)	Mastervortrag (5 LP)
Σ: 28 LP 2 Prüfungen	Σ: 30 LP 2 Prüfungen	Σ: 32 LP 4 Prüfungen	Σ: 30 LP
Legende:	Vorlesungsmodule Wahlmodule	Praktikumsmodule Masterarbeit	

Vorbemerkung: Bei bestimmten Modulen wird als Zulassungsvoraussetzung die erfolgreiche Teilnahme an Modulen gefordert, die gem. Musterstudienplan zeitlich vorher zu absolvieren sind. Um diese Zulassungsvoraussetzungen kenntlich zu machen, werden im Rahmen dieses Modulhandbuches dazu die HHU-Modulkürzel genannt.

Gem. §9 der Prüfungsordnung werden hierbei selbstverständlich auch Studien- und Prüfungsleistungen berücksichtigt, die nicht an der HHU erbracht worden sind, sofern eine Gleichwertigkeit festgestellt worden ist.

Für die rechtzeitige Beantragung der Gleichwertigkeitsprüfung und die Vorlage von entsprechenden Ausbildungsbelegen sind die Studierenden verantwortlich.

Mit Start im Sommersemester

1. Semester	2. Semester	3. Semester	4. Semester
Organische Chemie MoPoS (9 LP)	Anorganische Chemie AC (9 LP)	Wahlpflicht 1 (8 LP)	Masterarbeit (25 LP)
Praktikum Organische Chemie MoPoS-P (5 LP)	Praktikum Anorganische Chemie AC-P (5 LP)	Wahlpflicht 2 (8 LP)	
Spezialisierungs- pflichtmodul (9 LP)	Physikalische Chemie SMKS-V (9 LP)	Wahlpflicht 3 (8 LP)	
Praktikum Spezialisierungs- pflichtmodul (7 LP)	Praktikum Physikalische Chemie SMKS-P (5 LP)	Wahlpflicht 4 (8 LP)	Mastervortrag (5 LP)
Σ: 30 LP 2 Prüfungen	Σ: 28 LP 2 Prüfungen	Σ: 32 LP 4 Prüfungen	Σ: 30 LP
Legende:	Vorlesungsmodule Wahlmodule	Praktikumsmodul Masterarbeit	e

Die bei den einzelnen Modulbeschreibungen angegeben Studiensemester beziehen sich auf einen Studienbeginn in einem Wintersemester!

Module des Instituts für Anorganische Chemie und Strukturchemie

Pflichtmodule

Pflichtmodul Anorganische Chemie (AC)					Stand: 19.09.2023		
Studiengang: M. Sc	. Chemie					Modus: Pflich	nt
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r	Turnus	Studiens	emester
9	2	70	1 Seme	ster	WiSe	1	
Lehrveranstaltungen			Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Koordinationschemie: Grundlagen für Katalyse und Bioanorganische Chemie			٧	2	90	30	100
Festkörper- und Materialchemie			V	2	90	30	100
Metallorganische Komplexchemie			V	1	45	15	100
AC-Übungen			Üb	1	45	15	30
Modulverantwortli	iche:r	N.N.					
Beteiligte Dozieren	de	Die Dozie	rende der A	norganisc	hen Chemie.		
Sprache		Deutsch					
Weitere Verwendbarkeit Studiengang Modus							
des Moduls		M. Sc. Wirtschaftschemie (anteilig) Pflichtmodul					

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- wichtige Aspekte der modernen anorganischen Chemie beschreiben und erläutern,
- ein vertieftes Verständnis für Festkörper- und Materialchemie nutzen, insbesondere die Verwandtschaft bestimmter Strukturtypen und Struktur-Eigenschaftsbeziehungen beurteilen,
- Synthesen mit modernen Synthesemethoden problemorientiert im Zusammenspiel mit begleitenden Analyseverfahren planen und durchführen.

Inhalte

- 1. Koordinationschemie:
- Nomenklatur.
- Koordinationszahl und –polyeder.
- M-L-Bindung und ihre Effekte (CF, LF, MO Modell).
- Reaktivität in und von Übergangs-metallkomplexen.
- M-M-Bindungen.
- Untersuchungsmethoden.
- 2. Festkörper- und Materialchemie:
- Synthesemethoden der Festkörperchemie: Thermodynamik und Kinetik, Bedeutung von Temperatur und Druck
- Allgemeine und spezielle Punktlagen, Wyckoff-Notation, Relation zwischen Kristall- und Lagesymmetrien.
- Strukturverwandtschaften, Grundzüge von Gruppe-Untergruppe-Beziehungen.
- Einblick in Röntgendiffraktion als Charakterisierungstechnik.

- Elektronenbilanz.
- Isomerie.
- Stabilität.
- Komplexe mit kleinen Molekülen.
- medizinische Anwendungen.
- Grundlegende Beschreibung von Kristallstrukturen: Basis, Gitter, Struktur, Bravais-Gitter, Raumgruppentypen.
- Einfache Strukturtypen binärer und ternärer anorganischer Verbindungen.
- Bedeutung der Natur der chemischen Bindung.
- Beschreibung von Bandstrukturen, elektronische Eigenschaften von Festkörpern (Metalle, Halbleiter).

• Polyederverknüpfungen.

- Grundzüge des Magnetismus, Supraleitung.
- Zintl-Klemm-Busmann-Konzept und Vorhersage bestimmter Strukturmotive anhand von Elektronenzahlen.
- 3. Metallorganische Komplexchemie:
 - Vertiefung der Grundlagen aus dem EOC-BSc-Modul.
- Systematik der Liganden (Olefine und Diene, Allyle und Dienyle, cyclische Liganden, Carbene).
- Reaktionsmechanismen und spektroskopische Methoden in der metallorganischen Chemie.
- Isolobalanalogie.

• Clusterregeln.

Teilnahmevoraussetzungen	keine					
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesungen und Übungen.					
Zulassungsvoraussetzung zur Modulprüfung	keine					
Dutterman	Prüfungsform Dauer [min] benotet/unbenotet					
Prüfungen	Klausur 150 benotet					
Stellenwert der Note für die	ie Gesamtnote 14/135					
Constitute Information on						

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- K. E. Huheey, E. A. Keiter, R. Keiter, *Anorganische Chemie. Prinzipien von Struktur und Reaktivität*, De Gruyter, 3., durchges Aufl., Berlin/New York, **2020.**
- D. F. Shriver, P. W. Atkins, C. H. Langford, Anorganische Chemie, Wiley-VCH, 2. Aufl., Weinheim, 1997.
- zu 1.: C. Janiak, H. –J. Meyer, D. Gudat, P. Kurz, *Riedel. Moderne Anorganische Chemie*; De Gruyter, 5. Aufl., Berlin/Boston, **2018**.
- zu 2.: C. Janiak, H.-J. Meyer, D. Gudat, P. Kurz, Moderne Anorganische Chemie, de Gruyter, Berlin/Boston, 2018 (Kapitel 2).
- U. Müller, Anorganische Strukturchemie, Vieweg+Teubner, 6., aktual. Aufl., Wiesbaden, 2008.
- U. Müller, Symmetriebeziehungen zwischen Kristallstrukturen, SpringerSpektrum, 2. Aufl., Berlin, 2023.
- F. Hoffmann, Faszination Kristalle und Symmetrie, SpringerSpektrum, Wiesbaden, 2016.
- F. Hoffmann, Solid-State Chemistry, de Gruyter, Berlin/Boston, 2023.
- A. West, Solid State Chemistry and its Applications, Wiley, 2nd ed., Chichester, **2014**.
- P. M. Woodward, P. Karen, J. S. O. Evans, T. Vogt, Solid State Materials Chemistry, New York/Melbourne, 2021.
- R. Dinnebier, S. J. L. Billinge, Powder Diffraction Theory and Practice, RSC Publishing, Cambridge, 2008.
- H. Lueken, Magnetochemie, Teubner Studienbücher Chemie, Leipzig, 1999.

Ausgewählte (Review-)Artikel aus der Fachliteratur.

- zu 3.: C. Janiak, H. –J. Meyer, D. Gudat, P. Kurz, *Riedel. Moderne Anorganische Chemie*; De Gruyter, 5. Aufl., Berlin/Boston, **2018**.
- C. Elschenbroich, Organometallchemie, Teubner, 6. Auflage, Wiesbaden, 2008.

Pflichtpraktikum Anorganische Chemie (AC-P)						Stand: 15.05.2	2018
Studiengang: M. Sc	Studiengang: M. Sc. Chemie					Modus: Pflic	ht
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r	Turnus	Studiens	emester
5	1.	50	0 1 Semester WiSe			1.	
Lehrveranstaltungen		Тур	Umfan [SWS]	9	Präsenzzeit [h]	Gruppen- größe	
Moderne Anorgani	sche Chem	iie	PExp	6	120	90	10
AC-P-Seminar			Sem	1	30	15	30
Modulverantwortliche:r N.N.							
Beteiligte Dozieren	gte Dozierende Die Dozierende der Anorganischen Chemie.						

Modulverantwortliche:r	N.N.				
Beteiligte Dozierende	Die Dozierende der Anorganischen Chemie.				
Sprache	Deutsch				
Weitere Verwendbarkeit	Studiengang Modus				
des Moduls	M. Sc. Wirtschaftschemie (anteilig)	Pflichtmodul			

Studierende können nach erfolgreichem Abschluss des Moduls

- sicher mit komplexen Reaktionsapparaturen umgehen.
- moderne Synthesemethoden auswählen und anwenden.
- begleitende Analyseverfahren bewerten und auswerten.
- wissenschaftliche Ergebnisse kreativ präsentieren.

Inhalte

- Fortgeschrittene Synthesemethoden (Inertgas- und Schlenktechnik, HV-Apparaturen, Hydrothermalsynthese, Hochtemperaturreaktionen, Sol-Gel-Verfahren, nichtwäss. Lösungmittel).
- Herstellung und Charakterisierung von Liganden, Metallkomplexen, bioanorganischen Modellverbindungen, Pigmenten, Gläsern und Metall- bzw. Halbleiternanopartikeln, Hybridmaterialien.
- Reaktions- und Produktkontrolle mit kombinierten spektroskopischen Methoden.

Teilnahmevoraussetzungen	keine				
Studienleistungen	Teilnahme am Praktikum; Erfolgreiche Bearbeitung der Praktikums- aufgaben, Anfertigen von Protokollen; Seminar-Vortrag.				
Zulassungsvoraussetzung zur Modulprüfung	entfällt				
Dullf	Prüfungsform Dauer [min] benotet/unbenotet				
Prüfungen	unbenotet				
Stellenwert der Note für die					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- J. D. Woollins, *Inorganic Experiments*, Wiley VCH, 3., rev. Ed., Weinheim, **2010**.
- G. Brauer, M. Baudler, Handbuch der Präparativen Anorganischen Chemie, Enke, Stuttgart, 1954.
- W. A. Herrmann, G. Brauer, *Synthetic Methods of Organometallic and Inorganic Chemistry*, Thieme, Stuttgart, **1997**. Ausgewählte Artikel aus Chemie in unserer Zeit und dort zitierte Originalarbeiten.

Wahlpflichtmodule

Crystallographic software for chemists (CrystSoft)							Stand: 06.03	3.2024
Studiengang: M. Sc.	Chemie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
8	24	10	1 Seme	ster		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Molecular graphics, SCXRD and PXRD software, lectures			V	2		70	30	15
CrystSoft, exercise			Ü	2		80	30	15
Crystsoft, practicum	1		PExp	4		90	60	15
Modulverantwortli	che:r	Dr. István	Boldog					
Beteiligte Dozieren	de	Dr. István Boldog						
Sprache		English (Unterricht) & Deutsch (Diskussion, wenn nötig)						
Weitere Verwendb	arkeit	Studiengang Modus						
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	tmodul

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls:

- kompetente molekulare Zeichnungen erstellen,
- Einkristalldaten lösen, verfeinern und veröffentlichen,
- Kenntnisse über die Verarbeitung von Pulverbeugungsdaten haben,
- spezieller Software für die Suche und topologische Analyse verwenden.

Inhalte

- I. Molecular graphics (Mercury and Diamond; optionally CrystalMaker and Olex as a drawing tool).
- 1. Structural aspects: generation of a structure (range vs coordination spheres), filtering/connectivity/atom&bond list techniques for productivity.
- 2. Style aspects: 2D and 3D graphics, what is 3D rendering (the use of POV-Ray and, optionally, Blender), lighting and fog, central and parallel projections, common and special styles (wireframe/polyhedra as well as broken bonds), using a grid.
- 3. "How-to-practicum": to make graphics for a simple molecular structure (ORTEP-style, simple packing, etc.), to present a complex 3D structure, to make a video/motion picture, to create a visual-abstract/frontpage prototypes.
- 4. Basic understanding of topological analysis. Manual simplification of a complex structure for topological analysis using Diamond software.
- II. Single crystal X-ray data-based structure solution and refinement.
- 1. Data preparation and space group determination (XPREP), structure solution (direct methods as implemented in SHELXS, Superflip algorithm, notion about the Patterson method) and refinement (primarily with Olex, acquaintance with SHELXLe as a GUI).
- 2. Typical problems: using restraints and constraints, treatment of hydrogen atoms, disorder, acquaintance with practical cases of twinning.
- 3. "How-to-practicum": standard solution and refinement, verification and preparation for publication (cif-tools: EnCIFer, PublCIF, CheckCIF/Platon).
- III. Powder X-ray data processing (Jana, optionally FullProof and Topas; Mercury and Diamond for simulation of PXRD patterns).
- 1. Data preparation and straightforward phase analysis (visual 'finger-print' comparison on stacked graphs).

- 2. Indexing (ITO, DICVOL, TREOR).
- 3. Le-Bail and Powley fitting (establishing the correctness of the cell assignment).
- 4. Notion about structure solution (using Superflip algorithm) and Rietveld refinement (also by using a plausible starting model).

IV. Specialized software, incl. databanks:

1. Crystallographic databases: CSD and notion about alternatives.

Topological software (short introduction to Topos/ToposPro-online), surface area and void volume for porous structures (CrystalExplorer, Platon).

Teilnahmevoraussetzungen	Vorherige Teilnahme an ChemKrist wird empfohlen.				
Studienleistungen	Aktive Teilnahme am Praktikum, Anfertigung eines Berichts,				
Studiemeistungen	Absolvierung eines unbenoteten Tests.				
Zulassungsvoraussetzung	Aktive Teilnahme am Praktikum, Anfertigung eines Berichts,				
zur Modulprüfung	Absolvierung eines unbenoteten Tests.				
Dullforn non	Prüfungsform Dauer [min] benotet/unbenotet				
Prüfungen	Mündliche Einzelprüfung 45-60 benotet				
Stellenwert der Note für die Gesamtnote 8/135					
Constitution Information on					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

Documentation for the respective software. Primary software list (in order or decreasing importance): OLEX, SHELX package (additionally to documentation it is recommended the book of P. Müller, Crystal structure refinement, "A crystallographer's guide to SHELXL"), Diamond, Jana, Mercury (CCDC), Platon, SHELXLe, EnCIFer, PublCIF, TOPOS.

Vertiefte Aspekte aus Carben-Chemie und NMR- Spektroskopie (NHC-NMR)							Stand: 13.01.2022	
Studiengang: M. Sc.	Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	Block, 2 W	ochen/		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
NHC-NMR			V	3		90	45	20
NHC-NMR-Seminar			Sem	2		60	30	20
NHC-NMR-Übung			Ü	4		90	60	10
Modulverantwortli	che:r	Prof. Dr. 0	of. Dr. Christian Ganter, PD Dr. Klaus Schaper					
Beteiligte Dozierende Prof. Dr. 0			of. Dr. Christian Ganter, PD Dr. Klaus Schaper					
Sprache deutsch								
Weitere Verwendbarkeit Studiengang			g			Modus		
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	tmodul

Studierende können nach erfolgreichem Abschluss des Moduls

- die Bedeutung und historische Entwicklung von Carbenen in der organischen und metallorganischen Chemie erläutern,
- die unterschiedliche Stabilität und Reaktivität von Carbenen anhand ihrer chemischen Strukturen ableiten,
- Beispiele für die Nutzung von Carbenen in organischen und metallorganischen Reaktionen geben,
- die theoretischen Grundlagen der NMR-Spektroskopie erläutern,
- die Prozessierung von Messdaten beschreiben und anwenden,
- NMR-Spektren, inkl. komplexer Spinsysteme, auswerten,
- Komplexe NMR-Experimente beschreiben.

Inhalte

- Singulett- und Triplett-Carbene.
- Historische Entwicklung der Carbenchemie.
- Frühe Versuche zur Isolierung von stabilen N-heterocyclischen Carbenen (NHCs), Wanzlick und Arduengo.
- Stabilisierung, Charakterisierung und Bindungsverhältnisse von NHCs.
- Mit NHCs verwandte Systeme (CAACs, PHCs).
- Reaktivität von NHCs.
- Anwendungen von NHCs in der Organo- sowie der metallorganischen Katalyse.
- Theoretische Grundlagen der NMR-Spektroskopie.
- Wichtige Messparameter in der NMR-Spektroskopie.
- Prozessierung von Messdaten.
- Auswertung von NMR-Spektren und komplexen Spinsystemen.
- Theorie von komplexen NMR-Experimenten.

Teilnahmevoraussetzungen	BSc in Chemie; sinnvoll ist die vorherige Teilnahme am Master- Pflichtmodul AC.			
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung und Übung. Seminarvortrag			
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Seminarvortrags.			

D. Office and a	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Mündliche Einzelprüfung	30-45	benotet			
Stellenwert der Note für die	8/135					
Sonstige Informationen						
Aktuelle Informationen finder	n Sie auf ILIAS und im HIS-LSF.					
Literatur						
S. P. Nolan, N-Heterocyclic Carbenes. Effective tools for organometallic synthesis, Wiley-VCH, Weinheim, 2014 .						
Div. Übersichtsartikel sowie aktuelle Originalarbeiten.						

Nanochemie (NanoChem)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	1 Seme	ster		SoSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	0	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Nanochemie			V	1		40	15	20
NanoChem-Semina	r		Sem	1		35	15	20
NanoChem-Praktik	um		PExp	8		165	120	10
Modulverantwortl	iche:r	Prof. Dr. (Christoph Jai	niak				
Beteiligte Dozierende Prof. Dr. Christoph Janiak								
Sprache deutsch								
Weitere Verwendbarkeit Studiengang						Modus		
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- erworbene Kenntnisse und Methodenkompetenz auf dem Gebiet der nanoporösen und nanopartikulären Materialforschung anwenden,
- Synthese und Charakterisierung neuer nanoporöser und nanopartikulärer Materialien planen.

Inhalte

Vorlesung

- Nanoporöse Materialien am Beispiel der Metall-organischen Netzwerke (MOFs):
 - Einführung zu MOFs im Vergleich mit anderen porösen Materialien.
 - Grundlegende MOF-Strukturen und deren Aufbau.
 - Syntheserouten zu MOFs Materialien
 - mögliche Anwendungen von MOFs.
- Nanopartikuläre Materialien:
 - Synthesen, Charakterisierungen und Anwendungen von Nanomaterialien.
 - Methoden zur Visualisierung von Nanoteilchen.
 - Metall-Nanopartikel in der Katalyse.

Praktikum: jeweils ausgewählte Reaktionen bzw. Versuche, die die Prinzipien der Vorlesungsinhalte verdeutlichen.

Teilnahmevoraussetzungen	Studierende, die das Spezialisierungspflichtmodul AdMat besucht haben, können das Modul NanoChem nicht belegen.				
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung und Praktikum. Erstellen von Protokollen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des NanoChem-Praktikums.				
D	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote 8/135					
Sonstige Informationen					

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

VL-Präsentationen.

Übersichtsartikel sowie aktuelle Originalarbeiten.

Chemische Kristallographie (ChemKrist)						Stand: 15.05.2018	
Studiengang: M. Sc.	Chemie					Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Dau	ıer	Turnus	Studiens	emester
8	2	40	Block, 6	Wochen	SoSe	2	.•
Lehrveranstaltungen		Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Chemische Kristallo	Chemische Kristallographie			3	105	45	30
ChemKrist-Übung	ChemKrist-Übung		Ü	1	45	15	30
ChemKrist-Praktiku	m		PExp	4	90	60	15
Modulverantwortli	che:r	Dr. Guido	. J. Reiß				
Beteiligte Dozieren	de	Dr. Guido	J. Reiß				
Sprache		deutsch					
Weitere Verwendb	arkeit	Studiengang Modus				Modus	
des Moduls		M. Sc. Wi	rtschaftsch	iemie		Wahlpflicht	modul

Studierende können nach erfolgreichem Abschluss des Moduls

- vertiefende theoretischen Grundlagen der Kristallstrukturanalyse beschreiben.
- einen umfassenden Überblick über die experimentellen Möglichkeiten zur Charakterisierung von Einzelkristallen und Kristallpulvern mittels Röntgenbeugung geben.
- eine Kristallstrukturanalyse durchführen und dokumentieren.

Inhalte

- Erzeugung von Röntgenstrahlen und Strahlenschutz.
- Wellenkinematische Theorie der Röntgenbeugung, die Deutungen des Beugungsphänomens von Laue und Bragg.
- Translationenbehaftete Symmetrieelemente.
- Fourier-Reihen in der Kristallographie.
- Experimentelle Methoden (Kristallzucht und auswahl, kurze Einführung in die klassischen Filmmethoden, Vierkreisdiffraktometer, Imaging Plate- und CCD-Diffraktometer, Intensitätsdatensammlung).
- Strukturlösung mit direkten Methoden bzw.
 Pattersonfunktion.
- kritische Beurteilung der Ergebnisse von Kristallstrukturanalysen.
- Pseudosymmetriephänomene.
- Durchführung einer Kristallstrukturbestimmung und Erstellung einer CIF-Publikation.
- Grundlgen der Rietveld-Methode zur Kristallstrukturverfeinerung.

- Kristallgitter und Symmetrie.
- Das Reziproke Gitter, die Ewald-Konstruktion, Atomformfaktoren und Strukturfaktoren
- Systematische Auslösungen und die Bestimmung von Raumgruppen.
- Optische Diffrakometrie.
- Datenreduktion.
- Strukturverfeinerung und Oualitätsindikatoren.
- Kristallographische Datenbanken und Crystallographic Information Files.
- Aperiodische Kristallstrukturen.
- Grundlagen der Pulverdiffraktometrie und ihrer Meßmethoden, allgemeiner Informationsgehalt eines Röntgen-Pulverdiagramms.
- Methoden der Datenreduktion eines Röntgen-Pulverdiagramms.

- Peakprofilfunktionen, Korrekturfaktoren.

 Modellierung eines Pulverdiagramms ohne Strukturmodell ("LeBail Fit").
- Fortschritt einer Rietveld-Verfeinerung (R-Faktoren).
- Quantitative Phasenanalyse mit der Rietveld-Methode.

Teilnahmevoraussetzungen	keine					
Studienleistungen	Aktive Teilnahme mit Seminarbeitrag, Anfertigen von Protokollen.					
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des ChemKrist-Praktikums.					
Dullfungen	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Klausur	120	benotet			
Stellenwert der Note für die Gesamtnote 8/135						
Sonstige Informationen						

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- W. Massa, Kristallstrukturbestimmung, Teubner, 5., überarb. Aufl., Wiesbaden 2007.
- W. Borchardt-Ott, H. Sowa, *Kristallographie. Eine Einführung für Studierende der Naturwissenchaften*, Springer, 9. Aufl., Berlin/Heidelberg, **2018**.
- C. Giacovazzo (Hrsg.), Fundamentals of Crystallography, Oxford University Press, 3., rev. Ed., Oxford, 2011.
- H. Krischner, B. Koppelhuber-Bitschnau, *Röntgenstrukturanalyse und Rietveld-Methode*, Vieweg, 5., neubearb. Aufl., Braunschweig, **1994**.

Anorganische Photoaktive Materialien I - Grundlagen (PhotMat I)						Stand: 20.03.2024	
Studiengang: M. Sc	. Chemie					Modus: W	/ahlpflicht
ECTS-Punkte	Arbeitsau	ıfwand [h]	Dai	uer	Turnus	Studie	nsemester
8	24	40	1 Sem	ester	WiSe		2.
Lehrveranstaltunge	Lehrveranstaltungen		Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzei t [h]	Gruppen- größe
Vorlesung Anorgan	. Photoakt	ive Mat.	V	2	90	30	30
PhotMat-Übung			Ü	4	90	60	30
PhotMat-Seminar			Sem	2	60	30	30
Modulverantwortli	iche:r	Jun. Prof.	. Prof. Dr. Markus Suta				
Beteiligte Dozieren	de	Jun. Prof.	Prof. Dr. Markus Suta				
Sprache		deutsch,	sch, auf Wunsch englisch				
Weitere Verwendbarkeit Studiengang			g		Modus		
des Moduls B.Sc. Cher			mie		Qualifizierungsmodul		
B.Sc. Wirtschaftschemie				Qualifizie	rungsmodul		
		M. Sc. Wi	rtschaftsch	nemie		Wahlpflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- die Absorption und Lumineszenz typischer anorganischer photoaktiver Verbindungen sowie Einflussmöglichkeiten darauf erkennen, differenzieren, und bewerten,
- die Eignung experimenteller Untersuchungstechniken der Lumineszenzspektroskopie auf eine Problemstellung hin beurteilen und anwenden, und die Daten auswerten
- die verschiedenen Hierarchien der atomaren Zustände benennen, differenzieren und beurteilen,
- den Einfluss externer Stimuli auf die optischen Eigenschaften photoaktiver Materialien erläutern, und ihre Bedeutung für strahlende und strahlungslose Übergänge bewerten

Inhalte

Vorlesung:

- Grundbegriffe optischer Übergänge (Absorption, Emission, Stokes-Verschiebung)
- Experimentelle Techniken der Absorptions- und Lumineszenzspektroskopie an Lösungen und Festkörpern (steady-state und zeitaufgelöst)
- Hierarchie atomarer Zustände (Elektronenrepulsion, Spin-Bahn-Kopplung, Ligandenfeld)
- Anwendungen der Gruppentheorie für Ligandenfeldzustände, Kramersches Theorem
- Auswahlregeln und Einfluss auf Abklingzeiten
- Einstein-Koeffizienten, spontane & stimulierte Emission
- Photonische Effekte (lokale Feldverstärkung, Purcell-Effekt)
- Unterschiede zwischen nanokristallinen und mikrokristallinen Leuchtstoffen
- Einfluss äußerer Stimuli wie Druck und Temperatur auf die Lumineszenz
- Vibronische Kopplung
- Energietransfer und Energiemigration
- Strahlungslose Übergänge

Übung:

Vertiefung der Vorlesungsinhalte

Seminar:

 Präsentation aktueller Fachpublikationen durch die Studierenden im Rahmen des Mitarbeitendenseminars

	Grundkenntnisse der Koordinationschemie und Quantenmechanik sind				
Teilnahmevoraussetzungen	hilfreich. Das Modul kann nur gewählt werden, wenn es noch nicht im				
	Bachelorstudium als Qualifizierungsmodul belegt wurde.				
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung und Übung.				
Zulassungsvoraussetzung	Regelmäßige und aktive Teilnahme an Vorlesung und Seminar mit				
zur Modulprüfung	Seminarbeitrag				
Dullfragen	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Prüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote			8/135		

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- B. Henderson, G. Imbusch, Optical Spectroscopy of Inorganic Solids, Oxford University Press, Oxford/New York, 1989.
- G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer, Berlin/Heidelberg/New York, 1994.
- J. García Solé, L. E. Bausá, D. Jaque, *An Introduction to the Optical Spectroscopy of Inorganic Solids*, John Wiley & Sons, Chichester, **2005**.
- J. Lakowicz, *Principles of Fluorescence Spectroscopy*, Springer, 3. Ed., New York, **2006**.
- C. Ronda, Luminescence From Theory to Applications, Wiley, 2. Ed., Oxford/New York, 2010.
- M. Fox, Optical Properties of Solids, Oxford University Press, 2. Ed., Oxford/New York, 2010.
- R.-S. Liu, X.-J. Wang, Phosphor Handbook Fundamentals of Luminescence, 3. Ed., CRC Press, Boca Raton, 2022.

Ausgewählte (Review-)Artikel aus der Fachliteratur.

Anorganische F (PhotMat II)	Stand: 19.03.2024					
Studiengang: M. Sc.	. Chemie				Modus: W	/ahlpflicht
ECTS-Punkte	Arbeitsaufwand [h]	Dau	ier	Turnus	Studiensemester	
8	240	1 Sem	ester	SoSe	3.	
Lehrveranstaltungen		Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzei t [h]	Gruppen- größe
Vorlesung Anorgan. Photoaktive Mat.		V	2	90	30	30
Phot-Seminar	Sem	1	30	15	30	
Phot-Praktikum*		PExp	6	120	90	15

*Anmerkung: Das Praktikum wird vsl. In der vorlesungsfreien Zeit als Blockpraktikum stattfinden.

Modulverantwortliche:r	Jun. Prof. Dr. Markus Suta				
Beteiligte Dozierende	Jun. Prof. Dr. Markus Suta				
Sprache	Deutsch, auf Wunsch englisch				
Weitere Verwendbarkeit	Studiengang Modus				
des Moduls	des Moduls M. Sc. Wirtschaftschemie Wahlpflichtmodul				

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- die Absorption und Lumineszenz typischer anorganischer Emitter sowie Einflussmöglichkeiten darauf erkennen, differenzieren, und bewerten,
- die verschiedenen emittierenden Zentren in anorganischen Verbindungen differenzieren und beurteilen (Übergangsmetall-Ionen, s²-Ionen, Lanthanoide und Actinoide, Exzitonen),
- die Funktion optischer Bauelemente und Voraussetzungen anorganischer photoaktiver
 Materialien für die Anwendung in diesen Elementen bewerten.

Inhalte

Vorlesung:

- Lumineszenz gängiger Übergangsmetalle (V³+, Cr³+, Mn²+/4+, Fe²+/3+, Co²+, Ni²+)
- Lumineszenz der dreiwertigen Lanthanoide und Actinoide Judd-Ofelt-Mechanismus und Abweichungen
- Lumineszenz der zweiwertigen und vierwertigen Lanthanoide und Actinoide Bedeutung der 5dbzw. 6d-Orbitale
- Lumineszenz der s²-lonen (In+, Ga+, Sn²+, Pb²+, Sb³+, Bi³+)
- exzitonische Lumineszenz in halbleitenden Nanokristallen und 2D-Schichtmaterialien (Binäre und ternäre Chalkogenide und Pnictide; Halogenidoperowskite und elpasolite)
- Lumineszenz von Farbzentren und Defekten (z.B. F-Zentren in Alkalihalogeniden, NV-Zentren in Diamanten)
- Multiphotonenkonversion (Aufkonversion, Quanten-Cutting)
- Nichtlineare optische Effekte (Frequenzvervielfachung und -mischung) und Voraussetzungen kristalliner Verbindungen dafür
- Modellierung und theoretisches Verständnis optischer Übergänge
- Moderne Anwendungen optischer Materialien mit Fokus auf Anforderungen: Phosphorkonvertierte LEDs & Farbdisplays, medizinische Bildgebung, optische Manometrie & Thermometrie, optische Informationsspeicher & Logikgatter, Festkörper-Laser und Laserkühlung, Photovoltaik, Photonik und Einzelphotonenquellen, zirkular polarisierte Lumineszenz (CPL) zur Charakterisierung chiraler Koordinationsverbindungen.

Praktikum:

 Analyse und Vergleich der spektroskopischen Daten (steady-state, zeitaufgelöst) ausgewählter Leuchtstoffe.

- Leistungsabhängige Intensitätsbetrachtung eines Multiphotonenkonversions-Materials.
- Untersuchung und Modellierung eines einfachen Energietransfer-Prozesses.
- Evaluierung eines optischen Thermometers.

Seminar: Präsentation aktueller Fachpublikationen durch die Studierenden im Rahmen des Mitarbeitendenseminars

Teilnahmevoraussetzungen	Grundkenntnisse der PhotMat I sind sehr zu empfehlen.					
Studionloistungon	Regelmäßige und aktive Teilnahme an Vorlesung und Seminar mit					
Studienleistungen	Seminarbeitrag, Anfertigen von Protokollen.					
Zulassungsvoraussetzung	Regelmäßige und aktive Teilnahme an Vorlesung und Seminar mit					
zur Modulprüfung	Seminarbeitrag, Anfertigen von	Protokollen.				
D	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Mündliche Prüfung 30-45		benotet			
Stellenwert der Note für die	8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- B. Henderson, G. Imbusch, Optical Spectroscopy of Inorganic Solids, Oxford University Press, Oxford/New York, 1989.
- G. Blasse, B. C. Grabmaier, Luminescent Materials, Springer, Berlin/Heidelberg/New York, 1994.
- J. García Solé, L. E. Bausá, D. Jaque, *An Introduction to the Optical Spectroscopy of Inorganic Solids*, John Wiley & Sons, Chichester, **2005**.
- J. Lakowicz, Principles of Fluorescence Spectroscopy, Springer, 3. Ed., New York, 2006.
- C. Ronda, Luminescence From Theory to Applications, Wiley, 2. Ed., Oxford/New York, 2010.
- M. Fox, Optical Properties of Solids, Oxford University Press, 2. Ed., Oxford/New York, 2010.
- R.-S. Liu, X.-J. Wang, Phosphor Handbook Fundamentals of Luminescence, 3. Ed., CRC Press, Boca Raton, 2022.

Ausgewählte (Review-)Artikel aus der Fachliteratur.

Forschungsmodul in Anorganischer Chemie (FAC)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
8	240		Block, Woch	W/\Se/\SO\Se		/iSe/SoSe	2. oder 3.	
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Forschungsmodul in Anorganischer Chemie		Sem	2		60	30	20	
FAC-Praktikum			PExp	7		180	105	10
Modulverantwortliche:r Dozieren			Dozierende der Anorganischen Chemie.					
Beteiligte Dozierende Dozierend			erende der Anorganischen Chemie.					
Sprache deutsch							_	
Weitere Verwendbarkeit Studiengan			ng			Modus		

Studierende können nach erfolgreichem Abschluss des Moduls

- in einem Forschungsprojekt der aktuellen Anorganischen Chemie unter Anleitung mitarbeiten.
- den Stand der Forschung zu einem Projekt recherchieren.
- für das Projekt relevante Fragestellungen formulieren.
- geeignete Experimente planen, durchführen und auswerten.
- die Ergebnisse des Projektes in einem Bericht niederlegen und vor einem Fachpublikum präsentieren.

M. Sc. Wirtschaftschemie

Inhalte

des Moduls

Mitarbeit an einem Forschungsprojekt je nach Arbeitsgebiet des betreuenden Mitarbeiters. Mögliche Themenbereiche sind:

- MOFs und andere poröse Materialien.
- Nanopartikel.
- Carbenchemie.
- Lumineszente Metallkomplexe.
- Strukturchemie amphiphiler Verbindungen.
- Aromat-Metall-Komplexe.
- Crystal Engineering.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an den Pflichtmodulen AC und AC-P.				
Studienleistungen	Teilnahme am Seminar, regelmäßige Laborarbeit unter Anleitung, Anfertigung eines Berichts und Präsentation der Ergebnisse				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des FAC-Praktikums.				
Driftman	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die	Stellenwert der Note für die Gesamtnote				
Sonstige Informationen					
Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.					
Literatur					
Übersichtsartikel sowie aktuelle Orig	Übersichtsartikel sowie aktuelle Originalarbeiten zum Projektthema.				

Wahlpflichtmodul

Module des Instituts für Biochemie

Wahlpflichtmodule

Proteinkatalysierter Membrantransport (MT)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	Block, 3 W	ochen'		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Membrantransport			V	3		120	45	30
Transporter und Ca	rrier		PExp	7		120	90	15
Modulverantwortliche:r Prof. Dr. Lutz Schmitt								
Beteiligte Dozierende Prof. Dr. Lutz Schmitt								
Sprache deutsch								
Weitere Verwendbarkeit Studiengang			ang			Modus		
des Moduls M. Sc. Biochemie				Pflichtmod	ul			

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- wichtige zelluläre Membrantransportprozesse erklären,
- Struktur-/Funktionsbeziehung von stofftransportierenden Membranproteinen beschreiben,
- Membrantransportproteine isolieren, rekonstituieren und ihre katalytischen Eigenschaften bestimmen,
- wissenschaftliche Fragestellungen formulieren und Strategie zur Klärung entwickeln.

Inhalte

Vorlesung:

Primär/sekundär aktive Membrantransporter:

- Vorkommen und physiologische Bedeutung in Pro- und Eukaryoten, Mechanismen auf der Grundlage der Protein(kristall)strukturen.
- Funktion und physiologische Bedeutung von Ionenkanälen.
- Strukturelle Grundlagen für ihre Aktivität, Selektivität und Regulation, Signalübertragung durch membranständige Rezeptoren.
- Proteintransportsysteme in Pro- und Eukaryoten (Sec, Proteinsekr. Typ I-IV).
- Proteinfaltung und Chaperone.

Praktikum:

Drogenresistenz von ausgewählten Hefestämmen, Aufreinigung ausgewählter ABC-Transporter bzw. ihrer Domänen, Analyse der Kooperativität, Solubilisierungsstrategien, Charakterisierung der basalen und Substrat-stimulierten ATPase Aktivität in Detergenzlösung, Rekonstitution, qualitative und quantitative Charakterisierung von Proteoliposomen, Bestimmung der ATPase -Aktivität rekonstituierter ABC-Transporter.

Teilnahmevoraussetzungen	Keine, Grundkenntnisse in Biochemie werden empfohlen.				
Studienleistungen	Aktive und regelmäßige Teilnahme am Praktikum, Berichte zu den Praktikumsversuchen, Mündliche Präsentation.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktikums "Transporter und Carrier"				
D."f	Prüfungsform Dauer [min] benotet/unbenotet				
Prüfungen	60	benotet			
Stellenwert der Note für die Gesamtnote			8/135		

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

 ${\bf Aktuelle\ Reviews\ und\ Original publikationen\ nach\ Mitteilung.}$

From gene to in silico structure – the use of protein data Stand: 15.05.2018 bases (ISS) Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Studiensemester Dauer Turnus Block, WiSe (Präsenz) 150 3. oder 4. 2 Wochen SoSe (online)

Anmerkung: Es besteht die Möglichkeit, dieses Wahlpflichtmodul auch für 8 LP durchzuführen, sodass es als vollwertiges Wahlpflichtmodul gerechnet werden kann. Wenden Sie sich dazu an den Modulverantwortlichen.

Lehrveranstaltungen	Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Protein Data Bases	V	2	70	30	30
From Gene to in silico structure	Üb	3	80	45	30

Modulverantwortliche:r	Prof. Dr. Sander Smits	
Beteiligte Dozierende	Prof. Dr. Sander Smits	
Sprache	englisch	
Weitere Verwendbarkeit	Studiengang	Modus
des Moduls	M. Sc. Biochemie	Wahlpflichtmodul

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- Proteine mit Hilfe von Internetdatenbanken und darin implementierten Programmen analysieren,
- die gängigen Algorithmen zur Sequenzanalysen erklären,
- ihre Analyseergebnisse in Englisch präsentieren.

Inhalte

Vorlesung:

- DNA Sequenzierung (Methoden, Ansätze, Vor- und Nachteile).
- · Identifizierung von open reading frames.
- Sequenzalignments und Datenbanken (Modelle, Vor- und Nachteile).
- FASTA und BLAST.
- Datenbanken für 1-, 2- und 3-dimensionales Suchen.
- Literaturrecherchen.
- Datenbanksuchen mit "Profilen".
- Spezialisierte Websites Proteinidentifikation, -funktion und –aufbau.
- Multiple Sequenzalignments.
- In silico Proteinanalyse: Identifikation, Funktion, Targeting, Topologievorhersage, Posttranslationale Modifikationen, Transfer Sequenz/Struktur, Homologiesuche, Homologiemodellierung.

Übungen: Vom DNA-Segment zum Protein und dessen Funktion/Struktur; Präsentation der Resultate der Übungen

Teilnahmevoraussetzungen	Keine, Grundkenntnisse in Biochemie werden empfohlen.				
Studienleistungen	Strukturvorhersage und -analyse eines Proteins basierend auf der Gensequenz, Mündliche Präsentation der Versuchsergebnisse.				
Zulassungsvoraussetzung zur Modulprüfung	entfällt				
Dullfungen	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Diskussion zur Präsentation	unbenotet			
Stellenwert der Note für die Gesamtnote					
Sonstige Informationen					
Online-Anleitung wird bei Anmeldung zugänglich.					

Literatur

Aktuelle Reviews und Originalpublikationen nach Mitteilung.

Physics and Biology of Protein Folding in Cellular Stand: 15.05.2018 **Membranes** Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Studiensemester Dauer Turnus SoSe 240 Block, 3 Wochen Arbeits-Präsenzzeit Gruppen-Lehrveranstaltungen Тур Umfang [SWS] aufwand [h] größe [h] Vorlesung ٧ 3 135 45 15 PExp 5 75 15 Praktikum 105 Modulverantwortliche:r Prof. Dr. Alexej Kedrov Prof. Dr. Alexej Kedrov **Beteiligte Dozierende Sprache** englisch Weitere Verwendbarkeit Studiengang Modus des Moduls Wahlpflichtmodul M. Sc. Biochemie

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- Physikalische und biochemische Grundlagen von Membranproteinenfaltung erklären,
- Methoden in der Membranproteinfaltung und Stabilitätsforschung beschreiben,
- Sec-Komponenten und Ribosomen isolieren, rekonstituieren und ihre funktionelle Eigenschaften bestimmen.

Inhalte

Vorlesung:

- Thermodynamics of MP folding
- biophysical analysis of MP folding.
- MP targeting in bacteria and eukaryotes.
- folding in bacterial outer membranes.
- folding in mitochondria and peroxisomes.
- protein:protein and protein:lipid interactions.
- spontaneous insertion in biology.
- structure and dynamics of Sec and YidC-type insertases.
- tail-anchored proteins.
- membrane protein misfolding and degradation, ERAD.
- designing de novo membrane proteins, macromolecular crowding in membranes.

Praktikum:

- Isolation and liposome/nanodisc reconstitution of the Sec:YidC machinery.
- isolation of ribosome:nascent chain complexes (RNC).
- analysis of nascent chain contacts by chemical cross-linking.
- analysis of Sec-mediated protein translocation.
- studying RNC:signal recognition particle or RNC:Sec/YidC interactions.
- purification and analysis of MP intermediates.

Methods: bacterial cell culture, membrane isolation, chromatography-based purification, SDS-PAGE & western blotting, ATPase assay, ultra- and zonal centrifugation, fluorescence spectroscopy assays, incl. Förster's resonance energy transfer-based kinetic measurements, cell-free protein synthesis and assembly.

Seminar:

Preparing and presenting a publication on a relevant topic.

Teilnahmevoraussetzungen	Keine, Grundkenntnisse in Proteinbiochemie und Biophysik werden empfohlen.
Studienleistungen	Aktive und regelmäßige Teilnahme am Praktikum; Anfertigung von Protokollen.

Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktikums.				
	Prüfungsform Dauer [min] benotet/unbenotet				
Prüfungen	Schriftliche Abschlussprüfung	30	benotet (70 %)		
	Mündliche Präsentation	30	benotet (30 %)		
Stellenwert der Note für die	Stellenwert der Note für die Gesamtnote 8/135				
Sonstige Informationen					
Literatur					
Will be provided upon the registration and along the course.					

Vom Gen zum biotechnologischen Produkt (GenProd)						Stand: 15.05.2018		
Studiengang: M. Sc.	Chemie						Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	Block, 3 W	ochen		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Vom Gen zum biotechnologischen Produkt		V	2		75	30	30	
GenProd-Seminar		Sem	1		45	15	30	
GenProd-Praktikum		PExp	6		120	90	15	
Modulverantwortliche:r Prof. Dr. Vlada U			Vlada Urlach	er				
Beteiligte Dozierende Dr. Katja Koschorreck, Dr. Marco Girhard.								
Sprache	ne deutsch							
Weitere Verwendb	Veitere Verwendbarkeit Studiengang				Modus			
des Moduls		M. Sc. Biochemie					Wahlpflichtmodul	
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	tmodul

Studierende können nach erfolgreichem Abschluss des Moduls

- den Einsatz von Enzymen in der Biotechnologie beschreiben,
- Methoden zur Expression rekombinanter Proteine beschreiben und anwenden,
- Methoden zur chromatographischen Aufarbeitung von Enzymen wiedergeben und anwenden,
- Grundlegende Methoden zur Bestimmung enzymatischer Aktivität durchführen.

Inhalte

Vorlesung:

- Vergleich von verschiedenen prokaryotischen und eukaryotischen Expressionssystemen (Escherichia coli, Bacillus, Pseudomonas, Streptomyces, Pichia, Saccharomyces, Baculoviren, tierische und pflanzliche Zellen, zellfreie Expression).
- Aufarbeitung von Proteinlösungen (Filtrations- und Fällungsmethoden).
- Aufreinigung von Proteinen über chromatographische Methoden (Ionenaustausch, hydrophobe Interaktion, Affinität, Gelfiltration).
- Methoden der Produktaufarbeitung.

Praktikum:

- Grundlegende Techniken und Methoden zur Herstellung rekombinanter Proteine.
- Vergleich der Expression in pro- und eukaryotischen Mikroorganismen am Beispiel von Oxidoreduktasen.
- Kultivierung von rekombinanten Mikroorganismen in Schüttelkolben und im 5 L-Fermenter.
- Aufreinigung und Charakterisierung der Enzyme bezüglich Aktivität und Produktspektrum.
- Enzymkatalysierte Oxidation von hydrophoben Substraten und phenolische C-C-Kopplung.
- Produktaufarbeitung.

<u>Seminar</u>: Präsentation aktueller Publikationen zum Thema "Rekombinante Expression und Aufreinigung von Enzymen" durch die Studierenden.

Keine, Grundkenntnisse in Molekularbiologie, Mikrobiologie und			
Biochemie werden empfohlen.			
Aktive und regelmäßige Teilnahme an Praktikum und Seminar,			
Anfertigung von Versuchsprotokollen, Vortrag im Seminar.			
Erfolgreicher Abschluss des GenProd-Praktikums.			

D. Of	Prüfungsform	Dauer [min]	benotet/unbenotet
Prüfungen	Mündliche Einzelprüfung	30-45	benotet
Stellenwert der Note für die	8/135		
Literatur			

 $Semester a ktuelle \ Skripte \ zur \ Vorlesung \ und \ zum \ Praktikum.$

Aktuelle Reviews und Originalpublikationen nach Mitteilung.

- G. Walsh, *Proteins: Biochemistry and Biotechnology*, Wiley-Blackwell, 2. Ed, Chichester, **2014**.
- R. D. Schmid, V. B. Urlacher, Modern Biooxidation: Enzymes, Reactions and Applications, Wiley-VCH, Weinheim, 2007.

Molekulare Enzymologie (ME)						Stand: 15.05.2018		
Studiengang: M.	Sc. Chemie						Modus: Wah	nlpflicht
ECTS-Punkte	Arbeitsaufwa	nd [h]	Dauer			Turnus	Studiens	semester
8	240		Block, 3 Wo	chen		WiSe	3	3.
Lehrveranstaltu	veranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Molekulare Enzymologie			V	2		75	30	30
ME-Seminar	ME-Seminar		PExp	6		120	90	15
ME-Praktikum			Sem	1		45	15	30
Modulverantwo	rtliche	Prof. [Dr. Vlada Urlach	er				
Beteiligte Dozie	rende	Dr. Marco Girhard						
Sprache	che deutsch							
Weitere Verwer	itere Verwendbarkeit Studiengang			Modus				
des Moduls		M. Sc.	Biochemie (ant	eilig)			Pflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- Mechanismen und die Kinetik enzymkatalysierter Reaktionen erklären,
- Hintergründe enzymatischer Selektivität wiedergeben,
- UV/VIS Spektrometrie zur Analyse enzymatischer Reaktionen anwenden,
- GC/MS Spektren interpretieren,
- eigene experimentelle Daten vor dem Hintergrund aktueller Literaturdaten beurteilen und bewerten.

Inhalte

Vorlesung:

- Reaktionsmechanismen und Kinetiken, sowie Struktur-Funktionsbeziehungen von biotechnologisch relevanten Enzymen.
- Molekularer Hintergrund enzymatischer Regio-, Chemo- und Stereoselektivität.
- Vertiefung in die Methoden der biochemischen Analytik.

Praktikum:

- Überblick über Methoden der Biotransformation und Biokatalyse.
- Mutagenese (rationales Proteindesign) sowie Bestimmung enzymatischer Aktivität von freien und immobilisierten Oxidoreduktasen und Hydrolasen.
- Ermittlung von kinetischen Konstanten.
- Anwendung moderner analytischer Methoden (UV/VIS-Spektroskopie, Gaschromatographie gekoppelt mit Massenspektrometrie) zur quantitativen und qualitativen Bestimmung von Produkten enzymatischer Reaktionen.
- Untersuchung der Regio-, Chemo- und Enantioselektivität von Enzymen.

Seminar: Vorstellung und Diskussion der wesentlichen Ergebnisse und der Methodik der einzelnen Versuche sowie Vergleich mit Literaturdaten in einem Ergebnisvortrag.

Teilnahmevoraussetzungen	Keine, Grundkenntnisse und experimentelle Fähigkeiten in Biochemie werden empfohlen.				
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Anfertigung von Versuchsprotokollen, Vortrag im Seminar.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des ME-Praktikums.				
Dullforman	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur	60	benotet		

Stellenwert der Note 8/135

Literatur

Semesteraktuelle Skripte zur Vorlesung und zum Praktikum.

H. Bisswange, Enzymkinetik: Theorie und Methoden, Wiley-VCH, 3., völlig neu bearb. Aufl., Weinheim, 2000.

A. S. Bommarius, B. Riebel-Bommarius, *Biocatalysis. Fundamentals and Applications*, Wiley-VCH, Weinheim, **2004**.

Biogenesis and	Stand: 01.01.2018						
Studiengang: M. Sc	Modus: Wahlpflicht						
ECTS-Punkte	Arbeitsaufwand [h]	Dauer	Turnus	Studiensemester			
8 240 Block, 3 Wochen WiSe* 3.							
Anmerkung: Auf Anfrage können die Termine entsprechend angepasst werden und damit auch in das SoSe verschoben werden.							

Lehrveranstaltungen	Тур	Umfang [SWS]	Arbeitsauf- wand [h]	Präsenzzeit [h]	Gruppen- größe
Function and intracellular transport of ion channels	V	2	90	30	
Functional expression and visualization of a voltage-activated calcium channel complex	PExp	5	150	90	6

Modulverantwortliche:r	Prof. Dr. Patricia Hidalgo					
Beteiligte Dozierende	Prof. Dr. Patricia Hidalgo					
Sprache	Englisch					
Weitere Verwendbarkeit	Studiengang	Modus				
des Moduls	M. Sc. Biochemie; M.Sc. Biochemistry	Wahlpflichtmodul				
	International					
	M. Sc. Biologie; M.Sc. Biology International	Wahlpflichtmodul				

After successful completion of the course, the students know

- the theory and methods of membrane proteins biogenesis and intracellular transport,
- the importance of intracellular transport processes in health and disease,
- experimental strategies to study function and expression of ion channels,
- quantitative analysis of the protein movement inside the cell.

Inhalte

Vorlesung:

- Structure and function of voltage-activated ion channels.
- Molecular mechanisms underlying biogenesis.
- Intracellular transport and function of calcium channels.

Praktikum:

- Expression of ion channels and current recordings using the "whole-cell patch clamp technique" in cultured cells.
- Fluorescence labelling of cytoskeletal filaments (tubulin and actin) and different components of the trafficking machinery.
- Fluorescence labelling of purified proteins for microscale thermophoresis studies.
- Live-cell imaging from cells expressing voltage-activated calcium channels using spinning-disc microscopy, and quantitative analysis of the intracellular movement of the channel complex.
- Detection of heterologously expressed channel subunits in cytosolic and membrane-associated fractions by electrophoresis and fluorescence scanning.

Seminar: Oral presentations of experimental results.

Teilnahmevoraussetzungen	No previous knowledge is expected, but basic-knowledge in Cell Biology and sufficient command of English is recommended.				
Studienleistungen	Participation throughout the lectures and practical course, Oral presentation.				
Zulassungsvoraussetzung zur Modulprüfung	Successful completion of the practical course.				
D	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Oral presentation	20	benotet (50%)		

	Written Report	-	benotet (50%)			
Stellenwert der Note für die	8/135					
Sonstige Informationen						
Current information can be found at ILIAS and HIS-LSF.						
Literatur						
Actual reviews and original articles will be provided at the beginning of the course.						

Module des Instituts für Bioorganische Chemie

Wahlpflichtmodule

Biochemie der Naturstoffe (NatStoff-BC)						Stand: 15.05.2018		
Studiengang M. Sc.	Chemie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsa	ufwand [h]	Dau	uer		Turnus	Studien	semester
8	2	240	Block, 3	Wochen		SoSe	3	3.
Lehrveranstaltungen		Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Einführung in die Naturstoffbiosynthese			V	1		25	15	30
Naturstoffisolation-Seminar			Sem	2		45	30	30
Naturstoffe-Praktikum			PExp	6		170	90	12
Modulverantwortli	iche:r	Prof. Dr. Jö	rof. Dr. Jörg Pietruszka					
Beteiligte Dozieren	de	Dr. Thomas	homas Classen					
Sprache		deutsch						
Weitere Verwendbarkeit Studiengang						Modus		
des Moduls		B.Sc./M. Sc. Biochemie				Wahlpflichtmodul		
		B.Sc./M. Sc. Wirtschaftschemie Wa				Wahlpflichtmodul		
Lernziele und Kompetenzen								

Die Studierenden können die wichtigsten Naturstoffklassen der Sekundärmetabolite benennen und Schlüsselschritte der Biosynthese widergeben. Exemplarisch behandelte Naturstoffe können bezüglich ihrer biologischen sowie deren pharmakologische Funktionen eingeordnet werden. Die Studierenden können diverse Laborreinigungsoperationen technisch durchführen. Durch Abwägen der Vor- und Nachteile einer Reinigungsoperation für ein komplexes Stoffgemisch können die Studierende eine Isolationsstrategie konzeptionieren. Die Studierenden können die Identität der Isolate mithilfe physikalisch/chemischer Analyseverfahren nachweisen und den Reinheitsgehalt quantifizieren

Inhalte

Vorlesung:

- Biosynthese wichtiger Naturstoffklassen.
- Prinzipien der Biosynthese.
- Vergleich zwischen Primär- und Sekundärmetabolismus.

Praktikum: Isolation verschiedener Naturstoffe aus diversen Frisch- und Trockenpräparate mithilfe diverser Isolationstechniken. Die Identität der Isolate soll analysiert werden, sowie deren Gehalt quantifiziert werden.

Seminar: In Form von Praktikum begleitenden Kolloquien sollen die Studierenden sowohl die verwendeten Isolationstechniken als auch die Eigenschaften der behandelten Präparate den Kommilitonen vorstellen.

Teilnahmevoraussetzungen	Keine, aber Grundkenntnisse der Biochemie sowie der organischen Chemie werden empfohlen.				
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Protokoll zum Praktikum, Vorbereitung eines Kolloquiums.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktikums "Naturstoffisolation"				
Dullfungen	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die	8/135				

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

Literatur

J. McMurry, T. P. Begley, *Organische Chemie der biologischen Stoffwechselwege*, Spektrum Akademischer Verlag, Heidelberg, **2006**.

Skriptum zum Praktikum.

Optimierungsverfahren in der Proteinherstellung (OptiProt)						Stand: 15.05.2018		
Studiengang M. Sc.	Chemie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
8	2	40	Block, 3 W	ochen/		WiSe	3	3.
Lehrveranstaltungen			Тур	Umfai [SWS	U	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Einführung in die biotechnologische Proteinproduktion			V	1		25	15	30
OptiProt-Seminar			Sem	2		45	30	30
OptiProt-Praktikum			PExp	6		170	90	12
Modulverantwortli	che:r	Prof. Dr	Prof. Dr. Jörg Pietruszka					
Beteiligte Dozieren	de	Dr. Sonja	. Sonja Meyer zu Berstenhorst					
Sprache		deutsch, englisch (Seminarvortrag)						
Weitere Verwendbarkeit Studiengang				Modus				
des Moduls M. Sc. Bio			ochemie			Wahlpflichtmodul		
		M. Sc. Bio	logie				Wahlmodul	
		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Die Studierenden können Faktoren zur effizienten Erzeugung von Produktionsstämmen für Proteine benennen, kritisch evaluieren und eigenständig Strategien zur zielgerichteten Entwicklung von Produktionsstämmen anwenden. Die Studierenden wählen geeignete Analysemethoden, um die Qualität der einzelnen Proteinvarianten zu beurteilen. Diese Analysen werden eigenständig ausgewertet und kritisch reflektiert.

Inhalte

Vorlesung:

- Erzeugung und Optimierung von prokaryotischen und eukaryotischen Produktionsstämmen.
- Vergleich verschiedener Fermentationstechniken und Anwendung in der Biotechnologie.

Praktikum: Projektarbeit zur Erzeugung von Produktionsstämmen, vergleichender Fermentation und Funktionsanalyse der produzierten Proteine.

Seminar: Besprechung von relevanten Originalpublikationen durch die Studierenden.

Teilnahmevoraussetzungen	Keine, aber praktische Fähigkeiten und Kenntnisse in Biochemie und Molekularbiologie werden empfohlen				
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Protokoll zum Praktikum, Seminarvortrag.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktikums.				
Dullforn non	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung 30-45		benotet		
Stellenwert der Note für die	8/135				

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

Literatur

H. Rehm, T. Letzel, *Der Experimentator - Proteinbiochemie/Proteomics*, Springer Spektrum Verlag, 7. Aufl., Berlin/Heidelberg, **2016**.

H. Sahm, G. Antranikian, K-P. Stahmann, R. Takors, Industrielle Mikrobiologie, Springer Spektrum, Berlin/Heidelberg, 2013.

Naturstoffsynthese I (NATSY 1)							Stand: 15.05	Stand: 15.05.2018	
Studiengang M. Sc.	Chemie						Modus: Wa	ahlpflicht	
ECTS-Punkte	Arbeitsauf	wand [h]	Dauer			Turnus	Studiens	semester	
8	24	0	Block, 3 Wo	chen	WiSe	e und SoSe	3	3.	
Lehrveranstaltungen			Тур		fang VS]	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Einführung in die N	aturstoffsy	nthese	V	1		25	15	30	
Naturstoffsynthese	1-Semina	ſ	Sem	2		45	30	30	
Naturstoffe-Praktik	um		PExp	6 170		170	90	12	
Modulverantwortli	che:r	Prof. Dr	r. Jörg Pietrusz	ka					
Beteiligte Dozieren	de	Dr. Son	ja Meyer zu Be	erstenh	orst				
Sprache		deutsch	1						
Weitere Verwendbarkeit Studiengang					Modus				
des Moduls		M. Sc. Biochemie Wahlpflichtmodul					tmodul		
Lawaiala wad Kana		M. Sc. V	Virtschaftsche	mie			Wahlpflich	tmodul	

Die Studierenden erkennen Schlüsselschritte für die Syntheseplanung von (einfachen) Naturstoffen. Die Schlüsselreaktionen werden von ihnen theoretisch verstanden und in der Laborpraxis umgesetzt.

Inhalte

Vorlesung:

- Konzepte zur Retrosynthese.
- Entwicklung von Synthesestrategien für einfache
 Naturstoffe (z. B. β-Lactam-Antibiotika).
- Totalsynthese.
- Physiologische Eigenschaften.

• Schutzgruppenstrategien.

• Schlüsselreaktionen.

Biosynthese.

Praktikum: Projektarbeit zur Synthese von Schlüsselbausteinen der organischen Synthese.

Seminar: Vorträge zu den Projekten.

•					
Teilnahmevoraussetzungen	Keine, aber praktische Fähigkeiten und Kenntnisse in der Synthese- chemie werden empfohlen.				
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Protokoll zum Praktikum.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktik	ums.			
D.".f	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	benotet			
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

Literatur

K.C. Nicolaou, E.J. Sorensen, Classics in Total Synthesis. Targets, Strategies, Methods, Wiley-VCH, Weinheim, 1996.

K.C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II. More targets, strategies, methods, Wiley-VCH, Weinheim, 2003.

J. McMurry, T. P. Begley, *Organische Chemie der biologischen Stoffwechselwege*, Spektrum Akademischer Verlag, Heidelberg, **2006**.

Naturstoffsynthese II (NATSY 2)							Stand: 15.05.2018	
Studiengang M. Sc.	Chemie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
8	240		Block, 3 Wochen		١	ViSe und SoSe	3.	
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Naturstoffsynthese	2		V	1		25	15	30
Naturstoffsynthese	2 - Praktik	um	PExp	6		170	90	12
Naturstoffe - Semin	ar		Sem	2		45	30	30
Modulverantwortli	che:r	Prof. Dr	Jörg Pietrusz	ka				
Beteiligte Dozieren	de	Dr. Sonja	Meyer zu Be	erstenho	rst			
Sprache	Sprache deutsch							
Weitere Verwendbarkeit Studiengang					Modus			
des Moduls		M. Sc. Biochemie					Wahlpflichtmodul	
		M. Sc. Wi	rtschaftsche	mie			Wahlpflich	tmodul

Die Studierenden erwerben Kenntnisse und experimentelle Fähigkeiten zur (Bio)synthese und Retrosynthese von komplexen Naturstoffen. Die Studierenden wenden analytische Methoden (NMR, IR, MS, Enantiomerenanalytik) in der Praxisphase an Fallbeispielen an, werten die Spektren selbstständig aus und können eine Strukturzuordnung anhand der experimentellen Daten durchführen. Sie schätzen die analytischen Limitierungen kritisch ein.

Inhalte

Vorlesung:

Besprechung ausgewählter komplexer Zielverbindungen (z.B. Polyketide):

- Physiologisches Target
- Biosynthese

Synthesestrategien

• Erörterung mechanistischer und methodischer Details zu anspruchsvollen Syntheseschritten

Totalsynthese

<u>Praktikum:</u> Projektarbeit zur Synthese von Schlüsselbausteinen für die Naturstoffsynthese, Durchführung längerer Reaktionssequenzen.

<u>Seminar</u>: Besprechung von aktuellen Originalarbeiten.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an NATSY 1					
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Protokoll zum Praktikum, Seminarvortrag.					
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktik	Erfolgreicher Abschluss des Praktikums.				
D."5	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Mündliche Einzelprüfung 30-45 benotet					
Stellenwert der Note für die Gesamtnote 8/135						

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

- K.C. Nicolaou, E.J. Sorensen, Classics in Total Synthesis. Targets, Strategies, Methods, Wiley-VCH, Weinheim, 1996.
- K.C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II. More targets, strategies, methods, Wiley-VCH, Weinheim, 2003.
- J. McMurry, T. P. Begley, *Organische Chemie der biologischen Stoffwechselwege*, Spektrum Akademischer Verlag, Heidelberg, **2006**.

Module des Instituts für Organische Chemie und Makromolekulare Chemie

Pflichtmodule

Pflichtmodul Organische Chemie (MoPoS)							Stand: 15.05.2018	
Studiengang: M. Sc. (Chemie						Modus: Pfli	cht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
9	27	70	1 Seme	ster		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Vertiefte Makromole	ekulare Cl	nemie	V	2		75	30	100
Heterocyclenchemie			V	2		75	30	100
Stereochemie			V	1		60	15	100
MoPoS-Seminar			Sem	1		60	15	30
Modulverantwortlic	he:r	Prof. Dr. 7	Γhomas J. J. I	Müller				
Beteiligte Dozierend	le	Prof. Dr. 0	Constantin C	zekelius,	Prof	f. Dr. Thomas	s J. J. Müller,	
		Dr. Monir	alsadat Taba	atabai, P	D Dr.	Klaus Schap	er.	
Sprache		Deutsch o	der englisch	nach W	ahl c	ler Studierer	nden.	
Weitere Verwendba	rkeit	Studiengang Modus						
des Moduls		M. Sc. Wi	rtschaftsche	mie (ant	eilig)		Pflichtmod	ul

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls:

- synthetische und mechanistische Aspekte der modernen Polymerchemie analysieren und beurteilen,
- Synthesewege und Analytik moderner Polymere vorhersagen und interpretieren,
- Bedeutung und Relevanz von modernen Polymermaterialien und -synthesemethoden in der aktuellen Anwendung und Forschung erkennen und bewerten,
- synthetische und mechanistische Aspekte der modernen Heterocyclenchemie analysieren und beurteilen,
- Reaktivitäten von ausgewählten Heterocyclenklassen vorhersagen und interpretieren,
- Bedeutung und Relevanz von Heterocyclen in der aktuellen Anwendung und Forschung erkennen und bewerten,
- chirale Moleküle erkennen und anhand der IUPAC-Nomenklatur benennen,
- Konformationsanalysen an beliebigen organischen Molekülen durchführen,
- die Grundlagen stereoelektronischer Effekte beschreiben und ihre Auswirkung auf Struktur und Reaktivität organischer Moleküle erläutern,
- aktuelle Fachthemen beurteilen sowie angemessen zusammenfassen und präsentieren.

Inhalte

Vorlesung Vertiefte Makromolekulare Chemie:

- Kontrollierte radikalische Polymerisation: ATRP, NMP und RAFT Polymerisationen.
- Cyclopolymerisation und acyclische Dien Metathese (ADMET) Polymerisation.
- Ringöffnende Polymerisationen und ROMP.
- Polyinsertion, Herstellung von HDPE, LDPE,PP.
- Synthese von Kamm- und Stern Polymeren.
- Polymeranaloge Reaktionen.
- Leiter- und leitende Polymere.

Vorlesung Heterocyclenchemie:

- Systematische Nomenklatur (Hantzsch-Widman-Patterson-System, Austauschnomenklatur ("a"-System)).
- Fünfringheterocyclen (Synthesen, Vorkommen, Reaktionen).
- Ausgewählte Siebenringheterocyclen.

Vorlesung Stereochemie:

- Symmetrieoperationen an Molekülen.
- Benennung chiraler Moleküle anhand des CIP-Systems und der IUPAC-Nomenklatur.
- Konformationsanalyse cyclischer und acyclischer Systeme.
- Stereoelektronische Effekte, dirigierende Effekte.

- Kleine Ringe (Drei- und viergliedrige Heterocyclen).
- Sechsringheterocyclen (Synthesen, Vorkommen, Reaktionen).
- Porphyrin.
- Arten der Chiralität: Stereozentren, Axiale-, Planare-, Helicale- und Topologische Chiralität.
- Benennung stereoselektiver Transformationen.
- Cyclische und makrocyclische Stereokontrolle.
- Stereoselektivität der Nucleophil-Addition an Carbonylverbindungen mit α-Stereozentrum.

Im *Seminar* halten die Studierenden Vorträge über aktuelle Themen der organischen und makromolekularen Forschung.

Teilnahmevoraussetzungen	keine				
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesungen und Seminar, Seminarvortrag.				
Zulassungsvoraussetzung zur Modulprüfung	keine	keine			
Dullforn non	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur 120 benotet				
Stellenwert der Note für die	e Gesamtnote 14/135				
Sonstige Informationen					

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- S. Koltzenburg, M. Maskos, O. Nuyken, *Polymere. Synthese, Eigenschaften und Anwendungen*, Springer Spektrum, Berlin/Heidelberg, **2014**.
- D. Braun, H. Cherdron, M. Rehahn, H. Ritter, B. Voit, *Polymer Synthesis. Theory and Practice*, Springer, 5. Ed., Berlin/Heidelberg, **2013**.
- H.-G. Elias, Makromoleküle, Band 1-4, Wiley-VCH, 6., vollständig übera. Aufl., Weinheim, 1999.
- T. Eicher, S. Hauptmann, A. Speicher, *The Chemistry of Heterocycles. Structures, Reactions, Synthesis, and Applications*, Wiley-VCH, 3., completely rev. and enl. Ed., Weinheim, **2012**.
- T. L. Gilchrist/H. Neunhoeffer (Hrsg.), Heterocyclenchemie, Wiley-VCH, Weinheim, 1995.
- D. T. Davies, Aromatische Heterocyclen (Basistext Chemie 1), Wiley-VCH, Weinheim, 1995.
- E. L. Eliel, S. H. Wilen, L. N. Mander, Stereochemistry of Organic Compounds, Wiley, New York, 1994.
- B. Testa, Grundlagen der Organischen Stereochemie, Verlag Chemie, Weinheim, 1983.
- K.-H. Hellwich, C. D. Siebert, Stereochemistry Workbook. 191 Problems and Solutions, Springer, Berlin/ Heidelberg, 2006.
- P. Deslongchamps, Stereoelectronic Effects in Organic Chemistry, Pergamon Press, Oxford, 1983.

Pflichtpraktikum Organische Chemie (MoPoS-P)							Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Pfli	cht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
5	1!	50	1. Semeste	rhälfte		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
MoPoS-Praktikum	MoPoS-Praktikum			6		120	90	15
MoPoS-P-Seminar			Sem	1		30	15	30
Modulverantwortl	iche:r	Prof. Dr.	f. Dr. Thomas J. J. Müller					
Beteiligte Dozieren	Beteiligte Dozierende Prof. Dr. Constantin Czekelius, Prof. Dr. Thomas Dr. Moniralsadat Tabatabai, PD Dr. Klaus Schap				•			
Sprache deutsch								
Weitere Verwendbarkeit Studiengang					Modus			
des Moduls		M. Sc. Wi	rtschaftsche	mie (ant	eilig)		Pflichtmod	ul

Studierende können nach erfolgreichem Abschluss des Moduls

- sicher mit komplexen Reaktionsapparaturen und Gefahrstoffen umgehen,
- Möglichkeiten und Grenzen moderner Analyseverfahren benennen und gezielt geeignete Methoden zur Beantwortung von analytischen Fragestellungen auswählen,
- Sachdiskussionen auch in größeren Gruppen folgen und diese durch angemessene mündliche Beiträge bereichern.

Inhalte

- Fortgeschrittene Synthesemethoden.
- Mehrstufensynthesen.
- Reaktions- und Produktkontrolle mit kombinierten analytischen Methoden.

Im *Seminar* wird die Auswertung spektroskopischer Daten präsentiert und es werden relevante Aspekte der im Praktikum durchgeführten Versuche diskutiert.

Teilnahmevoraussetzungen	keine					
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum und Seminar, Erfolgreiche Bearbeitung der Praktikumsaufgaben, Erstellen von Versuchsprotokollen.					
Zulassungsvoraussetzung zur Modulprüfung	entfällt					
Dullfungan	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	unbenotet					
Stellenwert der Note für die	Gesamtnote					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

R. Brückner, S. Braukmüller, H.-D. Beckhaus, J. Dirksen, D. Goeppel, M. Oestreich, *Praktikum Präparative Organische Chemie. Organisch-Chemisches Fortgeschrittenenpraktikum*, Spektrum Akademischer Verlag, **2009**.

Ausgewählte Synthesevorschriften und Artikel aus aktuellen Veröffentlichungen.

Skriptum zum Praktikum.

Wahlpflichtmodule

Angewandte Makromolekulare Chemie: a) großtechnische Prozesse b) Polymere als Werkstoffe und Wirkstoffe							Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	Block, 3 W	ochen/		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Großtechnische Prozesse in der Organischen und Polymer-Chemie (GTS)			V	2		60	30	30
Polymere als Werks Wirkstoffe (PoWW)			V	2		60	30	30
GTS-PoM-Übung			Üb	2		120	15	30
Modulverantwortli	iche:r	Dr. Monir	alsadat Taba	atabai		•		
Beteiligte Dozieren	de	Dr. Monir	alsadat Taba	atabai				
Sprache		Deutsch /	ggf. englisch)				
Weitere Verwendbarkeit Studiengang					Modus			
des Moduls M. Sc. Wirtschaftschemie					Wahlpflichtmodul			
					Wahlpflicht	Wahlpflichtmodul		
Lernziele und Komi	netenzen							

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- aktuelle Aufgaben der industriellen Synthese angeben, Prozesswege von niedermolekularem Ausgangstoffe zur makromolekularen Produkt benennen,
- Materialeigenschaften von Commodity Polymeren und Blends und die Erzeugung gewünschter Eigenschaftsprofile benennen,
- molekulare Mechanismen der Interaktion von Makromolekülen mit biologischen Systemen identifizieren und wiedergeben,
- Synthesen und Anwendungen von Funktionspolymeren in der Biomedizin entwickeln.

Inhalte

Vorlesung (GTS):

- Stammbaum der chemischen Prozesse, von der Kohle bis zum Polymer, C1 bis C8 Chemie und Folgeprodukte.
- Herstellung von Arzneimitteln, Vitaminen und industrieller Polymere.

Vorlesung (PoM):

- Wirtschaftliche Bedeutung, physikalische Zustände und chemische Eigenschaften von Polymeren.
- Erzeugung spezifischer Eigenschaftsprofile für die Medizin (Mechanik, Responsivität und Interaktivität mit biologischer Materie).
- Polymere in der Medizin als Werkstoff (Medizintechnik, Implantat) und Wirkstoff (Wirkstoffvermittler, -transporter, Sequestrant, Inhibitor).

Übung: In den Übungen werden die Inhalte der Vorlesungen durch Präsentationen der Teilnehmer über aktuelle Forschungsthemen vertieft.

Teilnahmevoraussetzungen	Keine, aber solide Kenntnisse (Theorie und Praxis) in organischer Chemie und Makromolekulare Chemie werden empfohlen.						
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung und Übung.						
Zulassungsvoraussetzung zur Modulprüfung	keine						
	Prüfungsform	Prüfungsform Dauer [min] benotet/unbenotet					

Prüfungen	Mündliche Einzelprüfung	30-45	benotet
Stellenwert der Note für die	Gesamtnote		8/135
			,

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- K. Weissermel, H.-J. Arpe, Industrial Organic Chemistry, Wiley-VCH, 4., completely rev. Ed., Weinheim, 2003.
- H. Domininghaus, *Kunststoffe. Eigenschaften und Anwendungen*, Springer, 8., neu bearb. und erw. Aufl., Berlin/Heidelberg, 2012.
- R. Satchi-Fainaro, R. Duncan (Eds.), *Polymer Therapeuticsl and II. Polymers as Drugs, Conjugates and Gene Delivery Systems* (Advances in Polymer Science Vol. 192 and 193), Springer, Berlin/Heidelberg, **2006**.
- F. Puoci, Advanced Polymers in Medicine, Springer, Cham, 2015.

Multikomponenten- und Dominoreaktionen (MCR)						Stand: 15.05.2018			
Studiengang: M. Sc.	Studiengang: M. Sc. Chemie						Modus: Wa	Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester	
8	2	40	Block, 3 W	ochen'		WiSe	3	3.	
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Multikomponenten Dominoreaktionen	Multikomponenten- und Dominoreaktionen			2		75	30	30	
MCR-Seminar			Sem	1		45	15	30	
MCR-Praktikum			PExp	6		120	90	15	
Modulverantwortli	che:r	Prof. Dr.	Γhomas J. J. I	Müller					
Beteiligte Dozieren	de	Prof. Dr.	Γhomas J. J. I	Müller, F	D Dr	r. Klaus Scha _l	oer.		
Sprache		deutsch							
Weitere Verwendbarkeit Studiengang					Modus				
des Moduls		M. Sc. Biochemie Wahlpflichtmodul						modul	
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	modul	

Studierende können nach erfolgreichem Abschluss des Moduls

- komplexe Synthesen unter Berücksichtigung diversitätsorientierter Aspekte planen und experimentell durchführen,
- Synthesestrategien und Synthesen komplexer Moleküle kompetent beurteilen und evaluieren,
- mechanistischen Diskussionen komplexer Synthesen folgen und sich daran mit angemessenen Beiträgen beteiligen.

Inhalte

Vorlesung:

- Begrifflichkeiten.
- Reaktive Funktionalitäten.
- Michael-Additionen.
- Cycloadditionen.
- Metallvermittelten und metallkatalysierten Reaktionen.

- Reaktivitätsbasierte Konzepte.
- Multikomponentenreaktionen auf Basis von Carbonylverbindungen, Iminen, Iminiumionen.
- Isonitrilen.
- Radikalreaktionen.
- Homo- und Hetero-Domino-Reaktionen.

Praktikum: Ausgewählte Literaturpräparate zu Multikomponenten- und Dominoreaktionen.

Seminar: Diskussion relevanter Aspekte der im Praktikum durchgeführten Versuche.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an den Pflichtmodulen MoPoS und MoPoS-P. Kenntnis der Inhalte des Moduls MoBiCa wird empfohlen.			
Studienleistungen	Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, Anfertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Projekt und dessen theoretischen Hintergrund.			
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des MCR-Praktikums.			
Duff	Prüfungsform	Dauer [min]	benotet/unbenotet	
Prüfungen	Mündliche Einzelprüfung	benotet		
Stellenwert der Note für die	8/135			
Sonstige Informationen				

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Datenbanken (Reaxys, SciFinder) für Literaturrecherchen.

Literatur

Übersichtsartikel MCR:

- L. Levi, T. J. J. Müller, Chem. Soc. Rev. 2016, 45, 2825.
- S. Hassan, T. J. J. Müller, Adv. Synth. Catal. 2015, 357, 617.
- T. J. J. Müller, Top. Heterocycl. Chem. 2010, 25, 25.
- B. Willy, T. J. J. Müller, Curr. Org. Chem. 2009, 13, 1777.
- J. D. Sunderhaus, S. F. Martin, Chem. Eur. J. 2009, 15, 1300.
- B. B. Touré, D. G. Hall, Chem. Rev. 2009, 109, 4439.
- N. Isambert, R. Lavilla, Chem. Eur. J. 2008, 14, 8444.
- D. M. D'Souza, T. J. J. Müller, Chem. Soc. Rev. 2007, 36, 1095.
- G. Guillena, D. J. Ramón, M. Yus, Tetrahedron: Asymmetry 2007, 18, 693.

Übersichtsartikel Dominoreaktionen:

- J. Muzart, Tetrahedron 2013, 69, 6735.
- T. J. J. Müller, Synthesis 2012, 159.
- T. Vlaar, E. Ruijter, R.V. A. Orru, Adv. Synth. Catal. 2011, 353, 809.
- A. de Meijere, P. von Zezschwitz, S. Bräse, Acc. Chem. Res. 2005, 38, 413.
- G. Battistuzzi, S. Cacchi, G. Fabrizi, Eur. J. Org. Chem. 2002, 2671.
- L. F. Tietze, Chem. Rev. 1996, 96, 115.
- L. F. Tietze, U. Beifuss, Angew. Chem. 1993, 105, 137.

Monographien

- J. Zhu, H. Bienaymé, (Hrsg.), Multicomponent Reactions, Wiley-VCH, Weinheim, 2005.
- J. Zhu, Q. Wang, M.-X. Wang (Hrsg.), Multicomponent Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2015.
- L. F. Tietze, G. Brasche, K. M. Gericke, Domino Reactions in Organic Synthesis, Wiley-VCH, Weinheim, 2006.
- T. J. J. Müller (Hrsg.), *Multicomponent Reactions Vol. 1 und Vol. 2* (Science of Synthesis Series), Thieme Verlag, Stuttgart, **2014**.

Synthese und Katalyse (SynKat)							Stand: 15.05.2017	
Studiengang: M. Sc.	Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	Block, 3 W	ochen'		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	0	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Synthese und Kataly	yse		V	2		75	30	30
SynKat-Seminar		Sem	1		45	15	30	
SynKat-Praktikum	SynKat-Praktikum		PExp	6		120	90	15
Modulverantwortli	che:r	Prof. Dr.	of. Dr. Thomas J. J. Müller					
Beteiligte Dozieren	de	Prof. Dr. Thomas J. J. Müller, PD Dr. Klaus Schape			per.			
Sprache		deutsch						
Weitere Verwendb	arkeit	Studiengang			Modus			
des Moduls		M. Sc. Biochemie Wahlpflichtmodul				tmodul		
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	tmodul

Studierende können nach erfolgreichem Abschluss des Moduls

- katalytische Methoden bei der Syntheseplanung berücksichtigen und zielführend anwenden,
- Reaktionssequenzen unter Beteiligung katalytischer Syntheseschritte durchführen,
- katalytische Synthesestrategien und Synthesen komplexer Moleküle kompetent beurteilen und evaluieren,
- mechanistischen Diskussionen komplexer Synthesesequenzen folgen und sich daran mit angemessenen Beiträgen beteiligen.

Inhalte

Vorlesung:

Metallorganische Katalyse (keine Lewis-Säure-Katalyse, keine Hydrierungen):

- Kupplungsreaktionen jenseits des Palladiums (Fe, Cu, Rh, Ir).
- Cyclopropanierung (Rh, Cu).

• Metathese (Ru, Mo, W).

- CH-Aktivierung (Ru, Cu-Click).
- Cyclooligomerisierung (Co, Rh, Pd, Au).
- Additionen (Pd, Ru, Au).

Organokatalyse

- Grundlagen der metallfreien Katalyse.
- Aldol-Reaktion, Mannich-Reaktion, Diels-Alder-Reaktion, Michael-Addition.
- Stetter-Reaktion, Baylis-Hilman-Morita-Reaktion.

Praktikum: Ausgewählte Literaturpräparate zur Metall- und Organokatalyse.

Seminar: Diskussion relevanter Aspekte der im Praktikum durchgeführten Versuche.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an den Pflichtmodulen MoPoS und MoPoS-P. Kenntnis der Inhalte des Moduls MoBiCa wird empfohlen.			
Studienleistungen	Regelmäßige aktive Teilnahme an allen Lehrveranstaltungen, Anfertigung von Versuchsprotokollen, Vortrag über ein bearbeitetes Projekt und dessen theoretischen Hintergrund.			
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des SynKat-Praktikums.			
Dullforn non	Prüfungsform	Dauer [min]	benotet/unbenotet	
Prüfungen	Mündliche Einzelprüfung	benotet		
Stellenwert der Note für die	8/135			
Sonstige Informationen				

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Datenbanken (Reaxys, SciFinder) für Literaturrecherchen

Literatur

- L. S. Hegedus, Organische Synthese mit Übergangsmetallen, Wiley-VCH, Weinheim, 1995.
- A. Berkessel, H. Gröger, Asymmetric Organocatalysis. From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, 2005.
- A. de Meijere, F. Diederich (Hrsg.), Metal-Catalyzed Cross-Coupling Reactions, Wiley-VCH, 2., completely rev. and enl. Ed., Weinheim, 2004.
- D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, Springer, 3., überarb. und erw. Aufl., Berlin, 2019.
- O. M. Kuzmina, A. K. Steib, A. Moyeux, G. Cahiez, P. Knochel, Synthesis 2015, 47, 1696.
- F. Monnier, M. Taillefer, Angew. Chem. Int. Ed. 2009, 48, 6954.
- J. F. Hartwig, L. M. Stanley, Acc. Chem. Res. 2010, 43, 1461.
- S. Hassan, T. J. J. Müller, Adv. Synth. Catal. 2015, 357, 617.
- D. L. J. Broere, E. Ruijter, Synthesis 2012, 44, 2639.
- E. Jiménez-Núñez, A. M. Echavarren, Chem. Rev. 2008, 108, 3326.

Praktikumsskript.

Angewandte O	Stand: 15.05.2018			
Studiengang: M. Sc	Modus: Wahlpflicht			
ECTS-Punkte	Arbeitsaufwand [h] Dauer Turnu:			Studiensemester
8	240	Block, 3 Wochen	SoSe	2.

Anmerkung: Das Modul kann nur gewählt werden, wenn es noch nicht im Bachelorstudium als Qualifizierungsmodul belegt wurde. Zudem ist die Zahl der verfügbaren Plätze auf Grund der Qualifizierungsmodulteilnehmer begrenzt.

Lehrveranstaltungen	Тур	Umfang [SWS]	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Syntheseplanung	V	2	60	30	30
AOC-Seminar	Sem	1	45	15	30
AOC-Praktikum	PExp	6	135	90	15

Modulverantwortliche:r	Prof. Dr. Thomas J. J. Müller				
Beteiligte Dozierende	Prof. Dr. Thomas J. J. Müller, Prof. Dr. Constantin Czekelius, PD Dr.				
	Klaus Schaper, Dr. Stefan Beutner.				
Sprache	deutsch				
Weitere Verwendbarkeit	Studiengang Modus				
des Moduls	B. Sc. Biochemie (anteilig) Wahlpflichtmodul				
	B. Sc. Chemie	Qualifizierungsmodul			

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- einfache und komplexe Moleküle retrosynthetisch analysieren,
- einfache und komplexe Reaktionssequenzen zur Synthese von Zielmolekülen planen,
- Vor- und Nachteile unterschiedlicher Synthesewege identifizieren und differenziert erläutern,
- mehrstufige Synthesen durchführen und angemessen dokumentieren,
- analytische Methoden zum Strukturbeweis niedermolekularer Verbindungen auswählen und Spektreninformationen (NMR, IR und MS) interpretieren,
- aktuelle Fachthemen beurteilen sowie angemessen zusammenfassen und präsentieren.

Inhalte

Vorlesung:

- Synthesestrategien.
- Retrosynthetische Analyse.
- Syntheseplanung.
- wichtige Transformationen von funktionellen Gruppen.

Praktikum:

Am Beispiel ausgewählter Laborsynthesen von interessanten und relevanten Verbindungen werden Stoffklassen und Funktionalitäten mit Reaktionstypen und Mechanismen verknüpft. Hierzu werden auch mehrstufige Reaktionssequenzen und Mikrowellen-unterstütze Synthesen genutzt sowie die Möglichkeiten und Grenzen moderner analytischer Methoden bei der Identifizierung und Reinheitskontrolle der Syntheseprodukte aufgezeigt.

Abschließend in einer Arbeitsgruppe Mitarbeit an einem aktuellen Forschungsprojekt

Im Seminar werden relevante Aspekte der im Praktikum durchgeführten Versuche diskutiert.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an den Pflichtmodulen MoPoS und MoPoS-P. Kenntnis der Inhalte des Moduls MoBiCa wird empfohlen.
Studienleistungen	Regelmäßige und aktive Teilnahme an Praktikum. Erfolgreiche Bearbeitung aller Praktikumsaufgaben. Erstellen von Versuchs- protokollen. Beteiligung an Sachdiskussionen.
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des AOC-Praktikums.

Dullforn and	Prüfungsform	Dauer [min]	benotet/unbenotet
Prüfungen	Mündliche Einzelprüfung	30-45	benotet
Stellenwert der Note für die	8/135		

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- S. Warren, Organische Retrosynthese, Teubner, Stuttgart, 1997.
- S. Warren, P. Wyatt, Organic Synthesis. The Disconnection Approach, Wiley, 2. Ed., New York, 2008
- S. Warren, Workbook for Organic Synthesis. The Disconnection Approach, John Wiley & Sons, 2. Ed., New York, 2009.
- F. A. Carey, R.J. Sundberg, Organische Chemie. Ein weiterführendes Lehrbuch, Wiley-VCH, Weinheim, 1995, (Kap. 26).
- J. Fuhrhop, G. Penzlin, Organic Synthesis. Concepts and Methods, Wiley-VCH, 2., rev. and enl. Ed., Weinheim, 1994.
- K.C. Nicolaou, E.J. Sorensen, Classics in Total Synthesis. Targets, Strategies, Methods, Wiley-VCH, Weinheim, 1996.
- K.C. Nicolaou, S. A. Snyder, Classics in Total Synthesis II. More targets, strategies, methods, Wiley-VCH, Weinheim, 2003.
- E.J. Corey, X.-M. Cheng, *The Logic of Chemical Synthesis*, John Wiley & Sons, New York, **1989**.
- C.L. Willis, M. Wills, Syntheseplanung in der Organischen Chemie, Wiley-VCH, Weinheim, 1997.
- T. Wirth, Syntheseplanung aber wie?, Spektrum, Heidelberg, 1998.
- ${\it T.-L. Ho, Symmetry. A Basis for Synthesis Design, John Wiley \& Sons, New-York, {\bf 1995}.}$

Praktikumsskript.

Wahlpflichtmodul in Organischer Chemie (WOC)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wa	ahlflicht
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	Block, 3 W	ochen'	W	/iSe/SoSe	2. 00	der 3.
Lehrveranstaltungen		Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
WOC-Seminar			Sem	2		90	30	20
WOC-Praktikum			PExp	6		150	90	10
Modulverantwortl	iche:r	Prof. Dr.	Prof. Dr. Thomas J. J. Müller					
Beteiligte Dozieren	Beteiligte Dozierende Prof. Dr. Constantin Czekelius, Prof. Dr. Thomas J. J. Müll Klaus Schaper.			s J. J. Müller,	PD Dr.			
Sprache deutsch/ggf. englisch								
Weitere Verwendbarkeit Studiengang			ngang				Modus	
des Moduls		M. Sc. Biochemie			Wahlpflichtmodul			
		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- ein kleineres Forschungsprojekt konzipieren und Projektziele definieren,
- eine zielgerichtete Literaturrecherche unter Nutzung moderner Hilfsmittel durchführen,
- notwendige Experimente durchführen und auswerten,
- Projektergebnisse in angemessener Form verschriftlichen,
- Projektergebnisse in einem öffentlichen Vortrag zusammenfassen und in einer Sachdiskussion erläutern.

Inhalte

Planung und Durchführung eines Forschungsprojektes unter Anleitung eines/einer Doktoranden/Doktorandin:

- Definition des Projektes.
- Recherche der relevanten Literatur.
- Planung und Durchführung der Experimente.
- Spektroskopische Analyse der Produkte und Bewertung der Ergebnisse.
- Planung des weiteren Projektverlaufs.
- Anfertigung eines Abschlussberichts und Präsentation der Ergebnisse im Mitarbeiterseminar.

Teilnahmevoraussetzungen	Keine, aber solide Kenntnisse in organischer Synthesechemie werden empfohlen.				
Studienleistungen	Regelmäßige und aktive Teilnahme am AK-Seminar, sachgerechte Laborarbeit, Anfertigung eines Berichts und Präsentation der Ergebnisse.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des WOC-Praktikums.				
	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung beim jeweiligen AK-Leiter	benotet			
Stellenwert der Note für die	8/135				
Sonstige Informationen					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Datenbanken (Reaxys, SciFinder) für Literaturrecherchen.

Literatur

Übersichtsartikel und aktuelle Originalpublikationen zum Projektthema.

Elektrosynthese (ElSyn)						Stand: 15.05.2018		
Studiengang: M. Sc.	Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	Block, 3 W	ochen/		WiSe	3	3.
Anmerkung: Findet im jä	ihrlichen We	echsel mit Ena	antioselektiver	Katalyse (I	EnKat)	statt.		
Lehrveranstaltungen		Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Elektrosynthese			V	2		60	30	12
ElSyn-Seminar			Üb	1		30	15	12
ElSyn-Praktikum			PExp	6		150	90	12
Modulverantwortli	che:r	Prof. Dr. (of. Dr. Constantin Czekelius					
Beteiligte Dozieren	Beteiligte Dozierende Prof. Dr. C			f. Dr. Constantin Czekelius				
Sprache		Deutsch oder englisch nach Wahl der Studierenden.						
Weitere Verwendba	arkeit	Studiengang			Modus			
des Moduls		M. Sc. Biochemie Wahlpflichtmodul				modul		
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	modul

Studierende können nach erfolgreichem Abschluss des Moduls

- den Aufbau verschiedener Elektrosynthesezellen sowie den Einfluss von Elektrodenmaterialien,
 Leitsalz und Lösungsmitteln erklären,
- die mechanistischen Grundlagen der Elektrodenoberflächenprozesse erläutern,
- Cyclovoltammetrie-Messungen durchführen sowie die Ergebnisse mechanistisch interpretieren,
- Elektrosynthesen im präparativen Maßstab durchführen,
- Vorteile und Nachteile von Elektrosynthesen im industriellen Maßstab benennen.

Inhalte

Vorlesung:

- Redoxverhalten organischer Verbindungen, Redoxpotential, physikalische Grundlagen, Cyclovoltammetrie, reversible und irreversible Prozesse, Oberflächen- und Doppelschichtprozesse.
- Oxidationen und Reduktionen mit elektrischem Strom, Decarboxylierungen und Cyclisierungen.
- Zellaufbau, Elektrodenmaterial und -orientierung, Bedeutung von Lösungsmittel und Leitsalz.
- Verwendung von Modifiern, gekoppelte Katalysatorsysteme, Opferelektroden.
- Elektrosynthese in ungewöhnlichen Medien.
- Elektrosynthese im industriellen Maßstab.

Seminar: Bearbeitung von elektrochemischen Problemen und mechanistische Betrachtungen.

Praktikum:

- Durchführung verschiedener oxidativer und reduktiver Elektrosyntheseverfahren.
- Evaluierung unterschiedlicher Elektrodenmaterialen.
- Verwendung wässriger und nichtwässriger Lösungsmittel.
- Cyclovoltammetriemessungen.

Teilnahmevoraussetzungen	Keine
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung, Seminar und Praktikum. Erfolgreiche Durchführung aller Praktikumssynthesen. Erstellen von Protokollen.
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des ElSyn-Praktikums.

Delle	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die	8/135				
Sonstige Informationen					
Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.					
Literatur					
C.H. Hamann, W. Vielstich, <i>Elektrochemie</i> , Wiley-VCH, 4. Aufl., Weinheim, 2005 .					
W. Schmickler, <i>Grundlagen der Elektrochemie</i> , Vieweg, Berlin, 2000 .					
R. Holze, Elektrochemisches Praktikum, Vieweg+Teubner, Wiesbaden, 2001.					

Enantioselektive Katalyse (EnKat)					Stand: 15.05.2018			
Studiengang: M. Sc.	Studiengang: M. Sc. Chemie					Modus: Wa	hlpflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	Block, 3 Se	mester		WiSe	3	3.
Anmerkung: Findet im ja	ährlichen We	echsel mit Ele	ktrosynthese (E	ElSyn) stati	t.			
Lehrveranstaltungen			Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Enantioselektive Katalyse			V	2		60	30	10
EnKat-Seminar			Sem	1		30	15	10
EnKat-Praktikum			PExp	6		150	90	10
Modulverantwortli	che:r	Prof. Dr. 0	of. Dr. Constantin Czekelius					
Beteiligte Dozieren	de	Prof. Dr. 0	Constantin C	zekelius				
Sprache		Deutsch oder englisch nach Wahl der Studierenden.						
Weitere Verwendb	arkeit	Studiengang			Modus			
des Moduls		M. Sc. Biochemie			Wahlpflichtmodul			
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	modul

Studierende können nach erfolgreichem Abschluss des Moduls

- die grundsätzlichen Probleme bei der mechanistischen Beschreibung enantioselektiver katalytischer Transformationen wiedergeben,
- die Möglichkeiten der Elektrophilaktivierung über chirale Lewissäuren beschreiben und auf verschiedene Substrate anwenden,
- mögliche Katalysatoren für eine Nucleophilaktivierung benennen,
- doppelte Nucleophil- und Elektrophilaktivierung mechanistisch erläutern,
- mehrere Methoden zur enantioselektiven Olefinoxidation benennen und erläutern.

Inhalte

Vorlesung:

- Mechanistische Grundlagen der enantioselektiven Katalyse: Die Halpern-Studie.
- Aktivierung von Carbonylverbindungen durch chirale Lewissäuren.
- Aktivierungsmodi (Einpunkt- bzw. Zweipunktbindung), anwendbare Substrate, Einschränkungen.
- Nucleophilaktivierung durch chirale Übergangsmetallkomplexe.
- Doppelte Aktivierung von Nucleophil und Elektrophil, enthalpische und entropische Kontrolle, nichtlinearer Selektivitätsverlauf.
- Organokatalyse.
- Ausgewählte enantioselektive Oxidationsreaktionen von ungesättigten Kohlenwasserstoffen.

Seminar: Bearbeitung von stereochemischen Problemen anhand aktueller Naturstoffsynthesen.

Praktikum:

- Darstellung und Anwendung chiraler Katalysatoren für enantioselektive Epoxidierungsreaktionen von Allylalkoholen und nichtaktivierten Olefinen.
- Enantioselektive Dihydroxylierungsreaktionen.
- Moderne Analysemethoden zur Bestimmung der Enantioselektivität.

Teilnahmevoraussetzungen	Erfolgreiche Teilnahme an den Pflichtmodulen MoPoS und MoPoS-P.
Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung, Seminar und Praktikum. Erfolgreiche Durchführung aller Praktikumssynthesen. Erstellen von Protokollen.
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des EnKat-Praktikums.

D."f	Prüfungsform	Dauer [min]	benotet/unbenotet
Prüfungen	Mündliche Einzelprüfung	30-45	benotet
Stellenwert der Note für die	8/135		

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- F. A. Carey, R. J. Sundberg, Organische Chemie Ein weiterführendes Lehrbuch, Wiley-VCH, Weinheim, 1995.
- M. B. Smith, *March's Advanced Organic Chemistry. Reactions, Mechanisms and Structure*, J. Wiley & Sons, 7. Ed., New York, **2013**.
- I. Ojima (Hrsg.), Catalytic Asymmetric Synthesis, J. Wiley & Sons, 3. Ed., Hoboken, 2010.
- E. J. Corey, L. Kürty, Enantioselective Chemical Synthesis. Methods, Logic, and Practice, Elsevier Science, 2013.
- H. Yamamoto (Hrsg.), Lewis Acids in Organic Synthesis, Wiley VCH, Weinheim, 2000.

Stereoselektive Synthese (SSSyn)						Stand: 15.05.2018		
Studiengang: M. Sc.	Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	Block, 3 Se	mester		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Stereoselektive Syn	these		V	2		60	30	15
SSSyn-Seminar			Sem	1		30	15	15
SSSyn-Praktikum			PExp	6		150	90	15
Modulverantwortli	che:r	Prof. Dr. 0	Dr. Constantin Czekelius					
Beteiligte Dozieren	de	Prof. Dr. 0	Constantin C	zekelius				
Sprache		Deutsch oder englisch nach Wahl der Studierenden.						
Weitere Verwendb	arkeit	Studiengang			Modus			
des Moduls		M. Sc. Biochemie					Wahlpflichtmodul	
		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- diastereoselektive Reaktionen erkennen und mechanistisch erläutern,
- den Einfluss von Stereozentren auf den stereochemischen Verlauf einer nucleophilen
 Carbonyladdition erkennen und anhand des Felkin-Anh-Modells erläutern,
- den stereochemischen Verlauf der Enolatbildung und ihre Alkylierung erklären,
- die Grundprobleme stereoselektiver Aldol-Reaktionen erläutern und beobachtete Produktselektivitäten nachvollziehen,
- den Typus von Allylierungs- und Crotylierungsreagenzien erkennen und daraus die Produktselektivität ableiten,
- den Einfluss dirigierender Gruppen auf den stereoselektiven Verlauf von Oxidationsreaktionen darstellen,
- die Einflüsse mehrerer Stereozentren auf die Diastereoselektivität einer Reaktion abschätzen.

Inhalte

Vorlesung:

- Addition von Nucleophilen an Carbonylverbindungen mit α-Stereozentrum: Das Felkin-Anh-
- Stereoselektivität der Enolatbildung und Selektivität der Enolat-Alkylierung.
- Die Aldolreaktion: Probleme, Übergangszustände, chirale Auxiliare, syn- und anti-selektive Aldolreaktionen.
- Stereoselektivität von Allylierungen und Crotylierungen, Typ I-III-Reagenzien.
- Dirigierende Effekte und Diastereoselektivität in Epoxidierungen und Dihydroxylierungen sowie verwandten Oxidationsreaktionen.

Seminar: Bearbeitung von stereochemischen Problemen anhand aktueller Naturstoffsynthesen.

Praktikum:

- Anwendung chiraler Auxiliare bei der stereoselektiven Allylierung von Propionsäure.
- Stereoselektive Reduktionsverfahren von Ketonen.
- Moderne Analysemethoden zur Verfolgung des stereochemischen Verlaufs von Reaktionen.

Teilnahmevoraussetzungen Erfolgreiche Teilnahme an den Pfli	lichtmodulen MoPoS und MoPoS-P.
--	---------------------------------

Studienleistungen	Regelmäßige und aktive Teilnahme an Vorlesung, Seminar und Praktikum. Erfolgreiche Durchführung aller Praktikumssynthesen. Erstellen von Protokollen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des SSSyn-Praktikums.				
Dullforn man	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die	ellenwert der Note für die Gesamtnote 8/135				
Sonstige Informationen					

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- F. . A. Carey, R. J. Sundberg, Organische Chemie Ein weiterführendes Lehrbuch, Wiley-VCH, Weinheim, 1995.
- M. B. Smith, *March's Advanced Organic Chemistry. Reactions, Mechanisms and Structure*, J. Wiley & Sons, 7. Ed., New York, **2013**.
- E. M. Carreira, L. Kvaerno, *Classics in Stereoselective Synthesis*, Wiley VCH, Weinheim, **2009**.
- M. Braun, Modern Enolate Chemistry. From Preparation to applications in asymmetric synthesis, Wiley VCH, Weinheim, 2016
- T.-L. Ho, Stereoselectivity in Synthesis, John Wiley & Son Inc., New York, 1999.

Module des Instituts für Physikalische Chemie

Pflichtmodule

Pflichtmodul Physikalische Chemie (SMKS-V)						Stand: 15.05.2018		
Studiengang: M. Sc.	. Chemie						Modus: Pfli	cht
ECTS-Punkte	Arbeit	saufwand [h]	Da	uer		Turnus	Studiens	semester
9		270	1 Sem	nester		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfan [SWS]	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Spektroskopie komplexer Systeme (SMKS-1)			V	3		120	45	200
SMKS-1 Übungen			Üb	1		60	15	30
Mikroskopie kompl	exer Syste	me (SMKS-2)	V	2		90	30	200
Modulverantwortli	che:r	Prof. Dr. Matth	ias Karg	/ Prof. D	r. C	laus M. Seid	lel	
Beteiligte Dozieren	de	Die Dozierende	der Phy	sikalisch	en	Chemie im V	Vechsel.	
Sprache		deutsch						
Weitere Verwendbarkeit Studiengang							Modus	
des Moduls		M. Sc. Wirtscha	ftschem	ie (antei	ilig)		Pflichtmodul	

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- Grundlagen und fortgeschrittene Anwendungen spektroskopischer und mikroskopischer Methoden zur Analyse komplexer Systeme wiedergeben.
- Resonanzbegriff in der Spektroskopie erläutern und verschiedene Arten in Bezug auf Vorteile und Nachteile vergleichen.
- die verschiedenen Ursachen des Zerfalls elektronisch angeregter Zustände erläutern.

Inhalte

Vorlesung 1 (SMKS-1): Spektroskopie komplexer Systeme

- 1. Grundlegende Prinzipien.
- Motivation und historischer Abriss.
- Resonanz (klassisch, quantenmechanisch), Absorption,
 Emission (spontan und stimuliert) und Dispersion.
- 2. Spektroskopie von mehratomigen Molekülen.
 - Überblick, Vorteile der Behandlung von isolierten Molekülen: Rotationen, Schwingungen, Elektronische Anregungen.
- Dephasing und Energiedissipation (T1 und T2 Zeiten).

- Definition Spektroskopie, Spektroskopie mit EM-Wellen, Spektralbereiche.
- Allgemeine Messmethoden (Prinzipien und apparative Voraussetzungen) der Spektroskopie.
- Unterschiede Gasphase/flüssige Phase:
 Linienbreiten, Resonanzfrequenzen.
- 3. Zerfall elektronisch angeregter Zustände und zeitaufgelöste Spektroskopie.
- Übersicht über Zeitskalen, kürzestes Zeitskala für chemische Reaktionen
- Jablonski-Diagramm, Zerfallszeiten, Quantenausbeuten. •
- Intramolekulare Prozesse: Innere Konversion, Interkombination.
- Methoden der zeitaufgelösten Spektroskopie, fs-Spektroskopie
- Strahlende Lebensdauer, Strickler-Berg.
- Fluoreszenzlöschung durch: Energietransfer (FRET) und Elektrontransfer

- Photochemie
- 4. Physikalische Grundlagen der NMR-Spektroskopie und der Kernspintomographie
- Apparative Voraussetzungen, Spin- bzw. Photonenecho, 2-dimensionale NMR-Spektroskopie, dynamische Effekte.

Vorlesung 2 (SMKS-2): Mikroskopie komplexer Systeme

1. Einführung und Motivation

- Grenzflächen.
- Wechselwirkungen (elektrostatisch, van der Waals, sterische Effekte).
- Oberflächenenergie.
- Chemische und topographische Strukturierung von Oberflächen.

2. Optische Mikroskopie

- Grundlagen der optischen Abbildung und Vergrößerung.
- Lichtmikroskopie.
- Fluoreszenzmikroskopie.
- Optische Mikroskopie jenseits der Beugungsgrenze.

2. Elektronenmikroskopie

- Erzeugung von Elektronen.
- Führung von Elektronen im Mikroskop.
- Rasterelektronenmikroskopie.

3. Materialanalyse

- EDX- und WDX-Untersuchungen.
- Photoelektronenspektroskopie
- Plasmonenspektroskopie.

4. Rastersondenmikroskopie

- Optisches Nahfeldmikroskop.
- Rasterkraftmikroskopie.

- Kolloide und Nanostrukturen.
- Eigenschaften von Grenzflächen.
- Benutzung.
- Längenskalen.
- Lichtbrechung und –beugung.
- Auflösung im Abbe-Limit.
- Konfokalmikroskopie.
- Einfluss der Beschleunigungsspannung.
- Transmissionselektronenmikroskopie.
- kryo-Mikroskopie.
- Augerelektronen-Spektroskopie.
- Evaneszente Infrarot-Spektroskopie.
- Oberflächenverstärkter Ramaneffekt (SERS).
 - Rastertunnelmikroskopie.
 - Kraftmessungen.

Begleitend werden zu den verschiedenen Themen die Inhalte des Praktikums in beiden Vorlesungen vermittelt.

Übungen für Chemiker

Vertiefende Rechenübungen zu den Themen der Vorlesung SMKS1. Gestellte Aufgaben werden selbständig bearbeitet. Die korrigierten Übungsaufgaben werden gemeinsam mit der Darstellung der Lösungswege besprochen

Teilnahmevoraussetzungen	keine			
Studienleistungen	Regelmäßige und aktive Teilnahme an den Vorlesungen und Übungen, schriftliche Bearbeitung von Übungsaufgaben.			
Zulassungsvoraussetzung zur Modulprüfung	keine			
Dullfungen	Prüfungsform Dauer [min] benotet/unbenote			
Prüfungen	Klausur 120 benotet			
Stellenwert der Note für die Gesamtnote 14/135				

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Weitere Informationen finden Sie unter folgender Webadresse:

http://www.chemie.hhu.de/institute-und-lehrstuehle/institute/physikalische-chemie.html

Literatur

P.W. Atkins, J. De Paula, J. J: Keeler, *Physikalische Chemie*, Wiley-VCH, 6. Aufl., Weinheim, **2022**.

H.-J. Freund, G. Wedler, *Lehrbuch der Physikalischen Chemie*, Wiley-VCH, 6., vollst. überarb. und aktual. Aufl., Weinheim, **2012**.

W.J. Moore, D.O. Hummel, Physikalische Chemie, de Gruyter, 2., durchges. und verb. Aufl., Berlin, 1986.

G.M. Barrow, G.W. Herzog, *Physikalische Chemie I-III*, Vieweg, 6., ber. Aufl., Heidelberg, **1984**.

H. Kuhn, H.-D. Försterling, D. H. Waldeck, Principles of Physical Chemistry, John Wiley & Sons, 2 Ed., New York, 2009.

Pflichtpraktikum Physikalische Chemie (SMKS-P)						Stand: 15.05.2018		
Studiengang: M. Sc. Chemie						Modus: Pfl	cht	
ECTS-Punkte	Arbeitsau	fwand [h]	Dauer Turnus			Studien	Studiensemester	
5	1!	50	1 Semester SoSe 2.			2.		
Lehrveranstaltungen		Тур	Umfai [SWS	o l autwand		Präsenzzeit [h]	Gruppen- größe	
SMKS-Praktikum mit Seminar		PExp	rp 7 150		150	80	15	
Modulverantwortliche:r Prof. Dr. Matthias Karg / Prof. Dr. Claus M. Seidel								

Modulverantwortliche:r	Prof. Dr. Matthias Karg / Prof. Dr. Claus M. Seidel			
Beteiligte Dozierende	Die Dozierende der Physikalischen Chemie im Wechsel.			
Sprache	deutsch			
Weitere Verwendbarkeit	Studiengang Modus			
des Moduls	M. Sc. Wirtschaftschemie (anteilig) Pflichtmodul			

Studierende können nach erfolgreichem Abschluss des Moduls

- verschiedene spektroskopische Messungen durchführen,
- mikroskopische Techniken anwenden,
- Spektren aufzeichnen, analysieren und interpretieren,
- komplexe Moleküle, Grenzflächen und Nanostrukturen analysieren.

Inhalte

Praktikum/Seminar

Experimentelle Übungen zur physikochemischen Charakterisierung komplexer Systeme.

Die Theorie wird in begleitenden Seminaren zusätzlich diskutiert. 8 ausgewählte Versuche aus einem Pool von Versuchen, z.B.

- Registrierung und Auswertung eines Iod-Dampf
 VIS- Spektrums
- Mikroskopische Techniken zur Messung von Größenverteilungen
- Fluoreszenzspektroskopie
- Leitfähige Polymere

- Rotations- und Schwingungsspektren symmetrischer Kreisel
- Impedanzspektroskopie
- Protonierungskinetik
- Korrosion + Passivität

sowie weitere Versuche in enger Anlehnung an die Vorlesung.

Teilnahmevoraussetzungen	keine			
Studienleistungen	Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Praktikum: vor Versuchsbeginn mündliches Kolloquium zum Experiment, Seminarvortrag, Anfertigung von Protokollen.			
Zulassungsvoraussetzung zur Modulprüfung	entfällt	entfällt		
D."5	Prüfungsform	Dauer [min]	benotet/unbenotet	
Prüfungen			unbenotet	
Stellenwert der Note für die Gesamtnote				

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Weitere Informationen finden Sie unter folgender Webadresse:

http://www.chemie.hhu.de/institute-und-lehrstuehle/institute/physikalische-chemie.html

Literatur

P.W. Atkins, J. De Paula, J. J: Keeler, Physikalische Chemie, Wiley-VCH, 6. Aufl., Weinheim, 2022.

H.-J. Freund, G. Wedler, *Lehrbuch der Physikalischen Chemie*, Wiley-VCH, 6., vollst. überarb. und aktual. Aufl., Weinheim, **2012**.

G.M. Barrow, G.W. Herzog, *Physikalische Chemie I-III*, Vieweg, 6., ber. Aufl., Heidelberg, **1984**.

H. Kuhn, H.-D. Försterling, D. H. Waldeck, Principles of Physical Chemistry, John Wiley & Sons, 2 Ed., New York, 2009.

C.H. Hamann, W. Vielstich, *Elektrochemie*, Wiley-VCH, 4. Aufl., Weinheim, **2005**.

Wahlpflichtmodule

Grundlagen der Umweltchemie (GUC)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	1 Seme	ster		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Grundlagen der Um	weltchem	ie	V	2		60	30	50
GUC Seminar			Sem	1		45	15	30
GUC Praktikum			PExp	6		135	90	15
Modulverantwortli	che:r	Prof. Dr. I	Michael Schr	nitt				
Beteiligte Dozieren	de	Prof. Dr. Michael Schmitt						
Sprache Deutsch,			ch, englisch					
Weitere Verwendb	arkeit	Studiengan					Modus	
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Lernziele und Kompetenzen

Eigenständige Anwendung von in den Grundvorlesungen der Physikalischen Chemie erworbenen Fähigkeiten in der Thermodynamik, Kinetik und Spektroskopie auf Fragestellungen in der Umweltchemie. Befähigung zur vernünftigen Abschätzung von Größenordnungen physikochemischer Prozesse in der Umwelt. Befähigung zur Beurteilung von Modellvorstellungen.

Inhalte

Vorlesung:

- Aufbau der Atmosphäre.
- Physik der Atmosphäre (Temperatur- und Druckverlauf, Chemie der Atmosphäre, Kinetische Modellierungen, der natürliche Treibhauseffekt, der anthropogene Treibhauseffekt, das stratosphärische Ozonloch, Emission und Verhinderung von Schadgasen durch Industrie, Emission und Verhinderung von Schadgasen durch Verkehr, Luftanalytik, Abfallbehandlung, Anreicherung von Schadstoffen).
- Energieverbrauch/Energieerzeugung Prinzipien regenerativer Energiequellen.

Seminar:

- Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Umweltchemie.
- Mathcad-Übungen zu ausgewählten Problemen der Umweltchemie.

Praktikum (als Blockpraktikum):

- Anwendung spektroskopischer Techniken zur Messung und Quantifizierung von Spurengasen.
- Versuche zur Energieeffizienz.
- Versuche zum Abbau von Schadstoffen.
- Versuche zum Strahlungshaushalt der Erde

Teilnahmevoraussetzungen	keine				
Studienleistungen	Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Anfertigung von Protokollen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des GUC-Praktikums.				
D	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur 45		benotet		
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

A. Heinz, G. A. Reinhard, Chemie und Umwelt. Ein Studienbuch für Chemiker, Physiker, Biologen und Geologen, Vieweg, 4., aktual. und erw. Aufl., Braunschweig, **1996**.

K. Voß, Umweltchemie. Eine Einführung für Studium und Praxis, Springer, Berlin, 1997.

Laserspektroskopische Techniken (LST)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	semester
8	2	40	1 Seme	ster		SoSe	2.	-4.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Grundlagen der Um	nweltchem	ie	V	2		60	30	50
LST Seminar			Sem	1		45	15	30
LST Praktikum			PExp	6		135	90	15
Modulverantwortl	iche:r	Prof. Dr. I	f. Dr. Michael Schmitt					
Beteiligte Dozieren	ide	Prof. Dr. I	of. Dr. Michael Schmitt					
Sprache		Deutsch, englisch						
Weitere Verwendbarkeit Studiengang		ng				Modus		
des Moduls M. Sc. Wi			rtschaftschemie			Wahlpflichtmodul		
Lernziele und Kompetenzen								

- Kritisches Verständnis und Bewertung spektroskopischer Methoden
- Theoretisches Design und Konzipieren von spektroskopischen Experimenten.

Inhalte

Vorlesung:

- Laser.
- Polarisation.
- Spektrometer und Interferometer Frequenzstabilisierung.
- Absorptionsspektroskopie.
- Optogalvanische Spektroskopie.
- Raman-Spektroskopie.
- Ionisationsspektroskopie Fluoreszenzspektroskopie.

- Detektoren.
- Interferenz.
- Dopplerbegrenzte Spektroskopie mit Lasern Linienprofile.
- Photoakustische Spektroskopie.
- Cavity Ring Down Spectroskopie.
- Nichtlineare Ramanspektroskopie.
- Dopplerfreie Techniken.

Seminar:

- Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Spektroskopie.
- Mathcad-Übungen.

Praktikum (als Blockpraktikum):

- Laserspektroskopie an düsenstrahlgekühlten Molekülen.
- Ausgewählte Versuche zur Fluoreszenzspektroskopie (statisch, zeitaufgelöst).
- Ausgewählte Versuche zur Ionisationsspektroskopie.

Teilnahmevoraussetzungen	keine				
Studienleistungen	Aktive und regelmäßige Teilnahme an den Modulveranstaltungen. Anfertigung von Protokollen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des LSC-Praktikums.				
Df	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur	45	benotet		
Stellenwert der Note für die	8/135				

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- W. Demtröder, Laserspektroskopie, Springer, 6., aktualisierte Aufl., Berlin, 2011.
- G. Herzberg, Einführung in die Molekülspektroskopie. Die Spektren und Strukturen von einfachen freien Radikalen, Steinkopf Verlag, Darmstadt, 1971.

G. Herzberg, K.-P. Huber, *Molecular spectra and molecular structure 3. Electronic spectra and electronic structure of polyatomic molecules*, D. van Nostrand Co. Inc., 2 Ed., New York, **1991**.

Grundlagen der Nanooptik (GNO)						Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	emester
8	24	40	1 Seme	ster		SoSe	2	2.
Lehrveranstaltungen		Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Grundlagen der Na	Grundlagen der Nanooptik		V	2		60	30	30
GNO-Seminar			Sem	1		45	15	30
GNO-Praktikum			PExp	6		135	90	15
Modulverantwortli	iche:r	Prof. Dr. I	Matthias Kar	g				
Beteiligte Dozieren	de	Prof. Dr. Matthias Karg						
Sprache		Deutsch, englisch auf						
Weitere Verwendb	arkeit	Studiengang Modus						
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	modul

Studierende können nach erfolgreichem Abschluss des Moduls

- die Grundlagen lokalisierter sowie koppelnder plasmonischer Resonanzen wiedergeben,
- die Grundlagen excitonischer Zustände in Halbleiternanopartikeln wiedergeben,
- Unterschiedliche Nah- und Fernfeldkopplungsereignisse nachvollziehen,
- Experimentelle Spektren auswerten und interpretieren,
- Struktur-/Eigenschaftsbeziehungen in plasmonischen Superstrukturen ableiten.

Inhalte

Vorlesung:

- Edelmetallnanopartikel.
- Oberflächenpolaritonen.
- Exctionische Zustände.
- Drude-Modell.
- Einführung in die optischen Eigenschaften von Edelmetallnanostrukturen.
- Interferenzen.
- Extinktionsspektroskopie.

- Halbleiternanopartikel (Quantum dots).
- Oberflächenplasmonen
- Absorption und Streuung.
- Resonanzkopplung.
- Erzeugung von geordneten Nanostrukturen.
- Gitterkopplung

Seminar: Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Nanooptik.

Praktikum (als Blockpraktikum):

Es werden verschiedene Aspekte der Nanooptik an teilweise selbst-synthetisierten sowie, in Superstrukturen assemblierten, plasmonischen Nanopartikeln durch beispielhafte experimentelle und theoretische Versuche veranschaulicht. Einfache spektroskopische Verfahren werden zur Untersuchung angewandt und die Ergebnisse durch einfache theoretische Simulationen unterstützt.

Teilnahmevoraussetzungen	keine				
Studienleistungen	Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Praktikum, Seminarvortrag.				
Studiemeistungen					
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des GNO-Praktikums.				
D	Prüfungsform Dauer [min] benotet/unbeno				
Prüfungen	Mündliche Einzelprüfung	benotet			
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF sowie unter folgender Webadresse: http://www.karg.hhu.de/unsere-lehre.html

- D. Vollath, Nanomaterials. An introduction to synthesis, properties and applications, Wiley-VCH, 2. Aufl., Weinheim, 2013.
- G. Schmid, Nanoparticles. From theory to application, Wiley-VCH, 2., completely rev. and updated Ed., Weinheim, 2010.
- S. V. Gaponenko, Introduction to Nanophotonics. Cambridge University Press, Cambridge, 2010.
- S. A. Maier, *Plasmonics Fundamentals and Applications*, Springer, New York, **2007**.
- D. Sarid, W. Challener, *Modern Introduction to Surface Plasmons. Theory, Mathematica Modeling, and Applications,* Cambridge University Press, Cambridge, **2010**.

Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden (SSPK)							Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester
8	24	40	1 Seme	ster		WiSe	3	3.
Lehrveranstaltungen		Тур	Umfa [SWS	U	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Streumethoden zur Strukturaufklärung von Polymeren und Kolloiden		V	2		60	30	30	
SSPK-Seminar			Sem	1		45	15	30
SSPK-Praktikum			PExp	6		135	90	15
Modulverantwortli	che:r	Prof. Dr. I	Matthias Kar	g				
Beteiligte Dozierende Prof. Dr. I			of. Dr. Matthias Karg					
Sprache Deutsch,			h, englisch auf Wunsch					
Weitere Verwendbarkeit Studiengang		g				Modus		
des Moduls		M. Sc. Wi	rtschaftsche	mie			Wahlpflichtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- die Grundlagen der Polymer- und Kolloidchemie wiedergeben,
- die Grundlagen der Wechselwirkung verschiedener Strahlungsformen mit Materie nachvollziehen,
- die Grundlagen verschiedener Streumethoden wiedergeben,
- Experimentelle Streukurven auswerten und interpretieren,
- Strukturinformationen aus Streudaten ableiten.

Inhalte

Vorlesung:

Einführung zu Polymeren und Kolloiden:

- Definition, Herstellung, Stabilität, Anwendung.
- Charakterisierungsmethoden.
- Wechselwirkung elektromagnetischer Strahlung mit Materie:
- Absorption, Streuung, Reflektion, Beugung.
- Dynamische Lichtstreuung.
- Kleinwinkellichtstreuung.
- Neutronen- und Röntgen-Kleinwinkelstreuung:
- Strahlungserzeugung.
- Formfaktor.
- Kontrastvariation.

- Streuguerschnitt.
- Strukturfaktor.
- Zeitaufgelöste Experimente.

Seminar: Eigenständige Bearbeitung und Vorstellung ausgewählter Themen aus der Strukturaufklärung.

Praktikum (als Blockpraktikum):

Es werden verschiedene Aspekte der Kolloid- oder Polymersynthese, der Lichtstreuung, der Mikroskopie und Bildauswertung sowie der Handhabung von Streudaten bzw. Realraumdaten durch beispielhafte experimentelle und theoretische Versuche veranschaulicht.

Teilnahmevoraussetzungen	keine
Studienleistungen	Aktive Teilnahme an den Lehrveranstaltungen, Protokolle zum Praktikum, Seminarvortrag.

Aufbau und Eigenschaften.

Statische Lichtstreuung.

Depolarisierte dynamische Lichtstreuung.

Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des SSPK-Praktikums.				
Dullifum and	Prüfungsform Dauer [min]		benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die	Stellenwert der Note für die Gesamtnote 8/135				
Sonstige Informationen					

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF sowie unter folgender Webadresse: http://www.karg.hhu.de/unsere-lehre.html

- H.-D. Dörfler, Grenzflächen und kolloid-disperse Systeme, Springer, Berlin, 2002.
- H.-J. Butt, K. Graf, M. Kappl, Physics and Chemistry of Interfaces, Wiley-VCH, 3., rev. and enl. Ed., Weinheim, 2006
- W. Brown, Dynamic Light Scattering. The Method and Some Applications, Clarendon Press, Oxford, 1993.
- M. Hendrix, A. Leipertz, Photonenkorrelationsspektroskopie, *Physik in unserer Zeit*, **1984**, 3, 68.
- J. S. Higgins, H. Benoit, *Polymers and Neutron Scattering*, Clarendon Press, Oxford, **1994**.
- D. S. Sivia, *Elementary Scattering Theory. For X-ray and neutron users*, Oxford University Press, Oxford, **2011**.

Femtosekunden-Spektroskopie chemischer und Stand: 15.05.2018 biologischer Prozessse (FSCB) Studiengang: M. Sc. Chemie Modus: Wahlpflicht ECTS-Punkte Arbeitsaufwand [h] Studiensemester Dauer Turnus 8 240 1 Semester SoSe Arbeits-Präsenzzeit Umfang Gruppen-Lehrveranstaltungen Тур aufwand [SWS] [h] größe [h] Femtosekunden-Spektroskopie chemischer und biologischer Prozesse V 2 60 30 30 (FSCB) **FSCB-Seminar** Sem 1 45 15 30 FSCB-Praktikum PExp 6 135 90 15 Modulverantwortliche:r Prof. Dr. Peter Gilch Prof. Dr. Peter Gilch **Beteiligte Dozierende** Deutsch oder englisch nach Wunsch Sprache Weitere Verwendbarkeit Modus Studiengang

Lernziele und Kompetenzen

Bedeutung zeitaufgelöster Verfahren in der modernen physikalisch-chemisch und bio-physikalischen Forschung; Laserbasierte Messtechnik insbesondere Femtosekunden-Techniken; Chemische und biologische Prozesse auf kurzen Zeitskalen; Einarbeitung in aktuelle wissenschaftliche Literatur; Konzeption, Durchführung und Dokumentation eines Forschungsprojekts.

M. Sc. Wirtschaftschemie

M. Sc. Biochemie

M. Sc. Med. Physik

M. Sc. Physik

M. Sc. Biologie

Inhalte

Vorlesung

des Moduls

- 1. Zeitskalen physikalisch-chemischer Prozesse.
- 2. Methoden der zeitaufgelösten Spektroskopie im Überblick.
- 3. Messverfahren der Femtosekunden-Spektroskopie.
- Funktionsprinzip des Lasers.
- •
- Titan-Saphir-Laser und Verstärker.
- Charakterisierung von Femtosekunden-Impulsen.

Wahlpflichtmodul

Wahlpflichtmodul

Wahlpflichtmodul

Wahlpflichtmodul

Wahlpflichtmodul

- Frequenz-Konversion / Nicht-lineare Optik.
- Verfahren der Detektion: Absorption, Fluoreszenz, IR, Raman, etc.
- 4. Physikalische Prozesse im Femtosekunden-Bereich.
 - Dynamik versus Kinetik.

Wellenpaketsbewegungen.

Nicht-strahlende Prozesse.

Dynamische Solvatation.

Modenkopplung.

- 5. Chemische Prozesse im Femtosekunden-Bereich.
 - Elektrontransfer und Marcus-Theorie.
- Proton- und Wasserstofftransfer.

- Isomerisierungen.
- 6. Biologische Prozesse im Femtosekunden-Bereich.
- Photosynthese.

Sehprozess.

DNA-Photoschäden.

Seminar

In Zusammenarbeit mit dem Dozierende werden aktuelle Originalarbeiten aus dem Themenbereich der Vorlesung ausgewählt und von den Studierenden vorgestellt.

Praktikum

Im Praktikum (Block) wird ein ausgewähltes photo-reaktives Molekül zunächst von den Studierenden mit Verfahren der stationären Spektroskopie charakterisiert. Anschließend wird es unter enger Betreuung durch die Mitarbeiter des Arbeitskreises mit Femtosekunden-Methoden vermessen.

Teilnahmevoraussetzungen	keine				
Studienleistungen	Aktive und regelmäßige Teilnahme an den Modulveranstaltungen, Anfertigung von Protokollen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des FSCB-Praktikums.				
D."f	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung 30-45 b				
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

- C. Rulliére (Hrsg.), Femtosecond Laser Pulses. Principles and experiments, Springer, 2. Aufl., New York, 2005.
- J.-C. Diels, W. Rudolph, *Ultrashort Laser Pulse Phenomena*. *Techniques, and applications on a femtosecond time scale,* Academic Press, 2. Ed., Amsterdam, **2006**.
- D. Meschede, Optik, Licht und Laser, Vieweg+Teubner, 3. Aufl., Wiesbaden, 2008.
- R. W. Boyd, Nonlinear Optics, Academic Press, 3. Ed., Amsterdam, 2008.
- A. Nitzan, *Chemical Dynamics in Condensed Phases. Relaxation, Transfer, and Reactions in Condensed Molecular Systems* (Oxford Graduate Texts), Oxford University Press, Oxford, **2006**.
- P. Klán, J. Wirz, Photochemistry of Organic Compounds. From Concepts to Practice, John Wiley & Sons Ltd, Chichester, 2009.
- L. O. Björn (Hrsg.), Photobiology: The Science of Life and Light, Springer, 3. Ed., New York, 2009.

Ausgewählte Original- und Übersichtsarbeiten.

Präperative und spektroskopische Aspekte der organischen Photochemie (PSP) Stand: 15.05.2018							.2018	
Studiengang: M. Sc.	Chemie						Modus: Wa	hlpflicht
ECTS-Punkte	Arbeits	saufwand [h]	Daue	er		Turnus	Studiens	semester
8		240	1 Seme	ester		WiSe	3	3.
Lehrveranstaltunge	Lehrveranstaltungen			Umfa [SW	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
· · ·	Präperative und spektroskopische Aspekte der organischen Photochemie (PSP)			2		60	30	30
PSP-Praktikum			PExp	6		135	90	15
PSP-Seminar			Sem	1		45	15	30
Modulverantwortli	che:r	Prof. Dr. Peter	r Gilch, PC	Dr. Kl	aus S	chaper		
Beteiligte Dozieren	Beteiligte Dozierende Prof. Dr. Peter			Peter Gilch, PD Dr. Klaus Schaper				
Sprache Deutsch oder			englisch nach Wunsch					
Weitere Verwendbarkeit Studiengang							Modus	
des Moduls		M. Sc. Wirtsch M. Sc. Biocher		iie			Wahlpflichtmodul Wahlplfichtmodul	

Angeregte Zustände als elektronische Isomere erkennen; Bedeutung der Photochemie in Technologie und Industrie beschreiben; Photochemische Arbeitsweisen und Messtechniken erlernen; Sicherer Umgang mit aktueller wissenschaftlicher Literatur; Forschungsprojekt konzipieren, durchführen und dokumentieren.

Inhalte

Vorlesung

- 1. Absorption und Emission.
- 2. Nicht-strahlende Prozesse.
- 3. Ratenkonstanten und Quantenausbeuten.
- 4. Magnetfeldeffekte.
- 5. Methodische Aspekte der präparativen Photochemie.
- 6. Transferprozesse.
- 7. Woodward-Hoffmann-Regeln in der Photochemie.
- 8. Photoreaktionen von Carbonylverbindungen.
- 9. Industrielle Anwendungen.
- 10. Photolithographie.
- 11. Photolabile Schutzgruppen.

Seminar

In Zusammenarbeit mit dem Dozierende werden aktuelle Originalarbeiten aus dem Themenbereich der Vorlesung ausgewählt und von den Studierenden vorgestellt.

Praktikum

Das Blockpraktikum wird entweder mit präparativem Schwerpunkt in der AG Schaper oder mit spektroskopischem in der AG Gilch abgeleistet. Im präparativen Praktikum werden photochemische Synthesetechniken erlernt und angewandt. Im spektroskopischen Praktikum werden Moleküle hinsichtlich Quantenausbeuten und anderer photochemischen Parameter charakterisiert.

Teilnahmevoraussetzungen	Studierende, die das Spezialisierungspflichtmodul MPESP besucht haben, können das Modul PSP nicht belegen.
Studienleistungen	Aktive und regelmäßige Teilnahme an den Modulveranstaltungen, Anfertigung von Protokollen, Vortrag im Seminar.

Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des PSP-Praktikums.				
D	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote 8/135					
Sonstige Informationen					

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF. Das Modul ist Teil der Forschungsschule MPESP, kann aber auch als eigenständiges Modul belegt werden.

Literatur

P. Klán, J. Wirz, *Photochemistry of Organic Compounds. From Concepts to Practice*, John Wiley & Sons Ltd, Chichester, **2009**. N.J. Turro, V. Ramanmurthy, J.C. Scaino, *Modern Molecular Photochemistry of Organic Molecules*, University Science Books, Sausalito, **2010**.

Theorie und Simulation chemischer Reaktionen (TSCR)						Stand: 03.04.2024		
Studiengang: B. Sc. Chemie							Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsaufwand [h]		Dauer			Turnus	Studiensemester	
8	24	1 Semester		SoSe	3.			
Lehrveranstaltungen		Тур	Umfang [SWS]		Arbeitsauf- wand [h]	Präsenzzeit [h]	Gruppen- größe	
TSCR-Vorlesung			V	2		60	30	250
TSCR-Praktikum		PExp	6		135	90	15	
TSCR-Seminar		Sem	1		45	15	15	
Modulverantwortliche:r JunProf.		of. Dr. Jan Meisner						
Beteiligte Dozierende JunProf.		f. Dr. Jan Meisner						
Sprache Deutsch								
Weitere Verwendbarkeit Studiengang			g			Modus		
des Moduls		M. Sc. Wirtschaftschemie			Wahlpflichtmodul			
		B. Sc. Chemie				Qualifizierungsmodul		
Laraziala und Kam	notonzon							

Die Studierenden

- verstehen die physikalischen Grundlagen zur theoretischen Beschreibung von molekularen Systemen sowie die Grenzen der erlernten Methoden,
- verstehen quantitative Zusammenhänge zwischen Moleküleigenschaften und makroskopischen Eigenschaften,
- können computerchemische Methoden selbständig durchführen und evaluieren sowie die in der modernen Literatur präsentierten Ergebnisse einschätzen.,
- können die hier erlernten Methoden verwenden, um eine Bachelorarbeit anzufertigen.

Inhalte

- Hartree-Fock, LCAO-Näherung, Semiempirische Verfahren, Korrelationsmethoden, Dichtefunktionaltheorie
- Grundlagen der statistischen Theorie der Materie, Mikro- und Makrozustände, Verbindung von einfachen quantenmechanischen Modellen mit thermodynamischen Eigenschaften, Grundlagen der Übergangszustandtheorie
- Thermodynamische und kinetische Untersuchung von Reaktionsmechanismen im elektronischen Grundzustand und unter Einwirkung externer Stimuli
- Automatisierte Erkundung des chemischen Raums, Reaktionsnetzwerke und kinetische Modelle
- Grundlagen und Anwendungen von maschinellem Lernen in der theoretischen Chemie: Einsatz von künstlichen neuronalen Netzwerken zur Modellierung von Potentialenergiehyperflächen und deren Dynamik. Einsatz von neuronalen Netzwerken zum Lernen von Energien und Gradienten.

Teilnahmevoraussetzungen	Das Modul kann nur gewählt werden, wenn es noch nicht im Bachelorstudium als Qualifizierungsmodul belegt wurde.				
Studienleistungen	Teilnahme an Vorlesung, Seminar und Praktikum.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Praktikums und des Seminars.				
Prüfungen	Prüfungsform	Dauer [min]	benotet/unbenotet		
	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote			8/180		

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

- F. Jensen, Introduction to Computational Chemistry, Wiley-VCH, 3. Aufl., Weinheim, 2017.
- C. J. Cramer, Essentials of Computational Chemistry. Theories and models, Wiley, 2. Ed., Chichester, 2004.

Forschungsmodul in molekularer physikalischer Chemie (FMPC)								Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Wa	ahlpflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	semester	
8	2	40	1 Seme	ster	W	/iSe/SoSe	2. oder	3.	
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
	Forschungsmodul in molekularer physikalischer Chemie			2		80	30	20	
FMPC-Praktikum			PExp	8		160	120	10	
Modulverantwortli	iche:r	Prof. Dr. 0	Claus M. Seid	del					
Beteiligte Dozieren	de	Prof. Dr. 0	Claus M. Seid	del					
Sprache		Deutsch/ Englisch (nach Absprache)							
Weitere Verwendb	arkeit	keit Studiengang					Modus		
des Moduls M. Sc. Wirtschaftschemie						Wahlpflicht	tmodul		
		M. Sc. Bio	chemie				Wahlpflicht	tmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- in einem Forschungsprojekt der aktuellen molekularen physikalischen Chemie unter Anleitung mitarbeiten,
- den Stand der Forschung zu einem Projekt recherchieren,
- für das Projekt relevante Fragestellungen formulieren,
- durch Kenntnisse in den theoretischen Grundlagen geeignete Experimente planen, durchführen und auswerten,
- die Ergebnisse des Projektes in einem Bericht niederlegen und vor einem Fachpublikum präsentieren.

Inhalte

Mitarbeit an einem Forschungsprojekt in einem der verschiedenen Schwerpunktbereiche je nach Arbeitsgebiet des betreuenden Mitarbeiters.

Mögliche Schwerpunktbereiche sind:

- 1. Entwicklung und Charakterisierung von Fluoreszenzsonden.
- 2. Fluoreszenzspektroskopie zur Charakterisierung von Nanomaterialien und biologischen Systemen.
- 3. Höchst-aufgelöste Fluoreszenzmikroskopie zur Charakterisierung von Nanomaterialien und biologischen Systemen.
- 4. Biophysikalische Charakterisierung der Strukturbildung, Dynamik, und Stabilität von Biomolekülen (insbesondere Proteine und Nukleinsäuren).

Teilnahmevoraussetzungen	Keine, aber die Kenntnis von Themen, wie sie z.B. in den Modulen GPC und GPC-P vermittelt werden, wird vorausgesetzt.							
Studienleistungen	Teilnahme am Seminar, regelmäßige Laborarbeit unter Anleitung, Anfertigung eines Berichts und Präsentation der Ergebnisse.							
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des FMPC-Praktikums.							
Duff	Prüfungsform	Dauer [min]	benotet/unbenotet					
Prüfungen	Mündliche Einzelprüfung 30-45		benotet					
Stellenwert der Note für die	Stellenwert der Note für die Gesamtnote 8/135							
Sonstige Informationen								
Aktuelle Informationen finder	n Sie auf ILIAS und im HIS-LSF.	_	Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.					

Literatur

Grundlagenwissen aus von dem Dozierende benannten Lehrbüchern (Fluoreszenzspektroskopie, Mikroskopie und biophysikalischen Chemie / Biophysik), Übersichtsartikel sowie aktuelle Originalarbeiten zum Projektthema.

Forschungsmo	Stand: 08.01	2019					
Studiengang: M. Sc	Studiengang: M. Sc. Chemie						
ECTS-Punkte	Arbeitsaufwand [h]	Daue	er		Turnus	Studien	semester
8	240	1 Seme	1 Semester WiSe/SoSe			2. oder 3.	
Lehrveranstaltungen		Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Forschungsmodul Physikalische Chemie		Sem	2		60	30	20
FoPC-Praktikum	PExp	7		180	105	10	

Modulverantwortliche:r	Dozierende der Physikalischen Chemie				
Beteiligte Dozierende	Dozierende der Physikalischen Chemie				
Sprache	deutsch, englisch auf Wunsch				
Weitere Verwendbarkeit	Studiengang	Modus			
des Moduls	M. Sc. Wirtschaftschemie Wahlpflichtmo				
	M. Sc. Biochemie	Wahlpflichtmodul			

Studierende können nach erfolgreichem Abschluss des Moduls

- in einem Forschungsprojekt der aktuellen Physikalischen Chemie unter Anleitung mitarbeiten,
- den Stand der Forschung zu einem Projekt recherchieren,
- geeignete Experimente planen, durchführen und auswerten,
- die Ergebnisse des Projektes in einem Bericht niederlegen und vor einem Fachpublikum präsentieren.

Inhalte

Mitarbeit an einem Forschungsprojekt je nach Arbeitsgebiet des betreuenden Mitarbeiters.

Teilnahmevoraussetzungen	1	Keine, aber die Kenntnis von Themen, wie sie z.B. in den Modulen GPC und GPC-P vermittelt werden, wird vorausgesetzt.				
Studienleistungen	Teilnahme am Seminar und an Vorträgen aus dem Pool "Physikalisch-Chemisches Kolloquium" sowie "GdCh Vorträge", regelmäßige Laborarbeit unter Anleitung, Anfertigung eines Berichts und Präsentation der Ergebnisse. Art und Umfang der zu erbringenden Studienleistungen sind dem konkreten experimentellen Programm angepasst und werden zu Modulbeginn mit den Teilnehmenden erörtert.					
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des FoPC-P	raktikums.				
	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Mündliche Einzelprüfung 30-45 benotet					
Stellenwert der Note für die	Stellenwert der Note für die Gesamtnote 8/135					
Constitution Information on						

Sonstige Informationen

http://www.chemie.hhu.de/institute-und-lehrstuehle/institute/physikalische-chemie.html

Literatur

Grundlagenwissen aus von dem Dozierende benannten Lehrbüchern, Übersichtsartikel sowie aktuelle Originalarbeiten zum Projektthema.

Module des Instituts für Theoretische Chemie und Computerchemie

Wahlpflichtmodule

Angewandte Quanten- und Computerchemie (AnQCCC)								Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Wa	hlflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studiens	semester	
8	24	40	Block, 1. Semesterhälfte			SoSe	2	2.	
Lehrveranstaltungen			Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
AnQCCC-Vorlesung			V	2		60	30	250	
AnQCCC-Seminar			Sem	1		45	15	30	
AnQCCC-Praktikum			PExp	6		135	90	15	
Modulverantwortl	iche:r	Prof. Dr.	Prof. Dr. Christel M. Marian						
Beteiligte Dozieren	de	Die Dozierende des Instituts für Theoretische Chemie und Computer-							
		chemie.	chemie.						
Sprache		deutsch/e	englisch						
Weitere Verwendbarkeit Studiengang						Modus			
des Moduls B. Sc. Wir			irtschaftschemie (anteilig)				Qualifizierungsmodul		
B. Sc. Che			emie			Qualifizierungsmodul			
	ormatik			Wahlpflichtmodul					
		M. Sc. Wi	rtschaftsche	mie			Wahlpflicht	tmodul	

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- die wichtigsten Methoden der Computerchemie anwenden,
- der Problemstellung angemessene Methoden und Basisätze auswählen,
- selbständig Geometrieoptimierungen an Molekülen durchführen und beurteilen,
- elektronische Anregungsspektren berechnen und interpretieren.

Inhalte

- 2. Grundzüge der statistischen Thermodynamik, Zustandssummern für Translation, Rotation, Schwingungs- und elektronische Energien.
- 3. Einschätzen der Leistungsfähigkeit der quantenchemischen und semiempirischen Methoden.
- 4. Interpretation der Ergebnisse von MO-Rechnungen.
- 5. Suche nach Minima und Übergangszuständen, Reaktionswärmen (Wahl von Atomorbitalbasen, Bedeutung der Nullpunktsschwingungsenergie, Temperaturabhängigkeit, Lösungsmitteleffekte).
- 6. Berechnung elektronischer Anregungsspektren mit DFT/MRCI.

Teilnahmevoraussetzungen	Keine, aber die Kenntnis von Lehrinhalten, wie sie z.B. im Bachelor- modul QCCC vermittelt werden, wird vorausgesetzt. Das Modul kann nicht belegt werden, wenn es bereits im Bachelorstudien-gang als Qualifizierungsmodul absolviert worden ist.				
Studienleistungen	Teilnahme an Vorlesung und Praktikum, Auswertung der Praktikumsaufgaben, Seminarvortrag.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des AnQCCC-Praktikums.				
Driftman	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		

Stellenwert der Note für die Gesamtnote 8/135

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts.

Wenn das Modul bereits als Qualifikationsmodul im Bachelorstudiengang gewählt wurde, ist eine Belegung als Wahlpflichtmodul im Masterstudiengang ausgeschlossen.

Literatur

Skript zur Vorlesung.

C. J. Cramer, Essentials of Computational Chemistry. Theories and Models, Wiley, 2. Ed., Chichester, 2004.

Fortgeschrittene Quantenchemie (FQC)								Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: Wa	ahlflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	٢		Turnus	Studien	semester	
8	24	40	1 Seme	ster		SoSe	2	2.	
Lehrveranstaltungen		Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe		
Quantenchemische Methoden für elektronisch angeregte Zustände			V	2		90	30	250	
Mathematische Methoden der Theoretischen Chemie		V	1		45	15	250		
Quantenchemische elektronisch angere			Üb	1		45	15	30	
Mathematische Methoden der Theoretischen Chemie		Üb	1		45	15	30		
Ausgewählte Kapitel der Theoretischen Chemie		Sem	1		15	15	30		
Modulverantwortliche:r Prof. Dr. Christel M. Marian									
Beteiligte Dozierende Die Dozierende des Instituts für Theoretische Chemie und									

Modulverantwortliche:r	Prof. Dr. Christel M. Marian					
Beteiligte Dozierende	Die Dozierende des Instituts für Theoretische C	Chemie und				
	Computerchemie.					
Sprache	deutsch/englisch					
Weitere Verwendbarkeit	Studiengang Modus					
des Moduls	M. Sc. Wirtschaftschemie	Wahlpflichtmodul				
	M. Sc. Informatik Wahlpflichtmodul					
	M. Sc. Physik	Wahlpflichtmodul				
	M. Sc. Mathe	Wahlpflichtmodul				

Studierende können nach erfolgreichem Abschluss des Moduls

- die mathematischen Grundlagen der Quantentheorie wiedergeben,
- die Gruppentheorie auf Kernbewegungen, Molekülorbitale und Elektronenspins anwenden,
- entscheiden, welche Übergänge zwischen Zuständen erlaubt sind,
- Grundzüge der variations und störungstheoretischen Verfahren herleiten,
- Methoden zur Berechnung angeregter Zustände korrekt beurteilen und auswählen,
- Umgebungseffekte in Berechnungen berücksichtigen,
- Wahrscheinlichkeiten für elektronische Übergänge berechnen.

Inhalte

Vorlesung Quantenchemische Methoden für elektronisch angeregte Zustände

- 1. Optimierung von Molekülorbitalen (HF, CASSCF, DFT).
- 2. Elektronenstrukturmethoden für angeregte Zustände.
 - 2.1. Variationsverfahren (CI, CIS, DFT/MRCI).
 - 2.2. Störungstheoretische Verfahren (CASPT2).
 - 2.3. Response-Methoden (TDHF, TDDFT, RICC2).
- 3. Umgebungseffekte auf elektronische Spektren.
- 4. Dipolübergänge und Oszillatorstärken.
- 5. Spin-Bahn-Kopplung, Phosphoreszenz, Intersystem crossing.

Vorlesung Mathematische Methoden der Theoretischen Chemie

- 1. Mathematische Grundlagen der Quantenmechanik.
- 2. Molekülpunktgruppen.
- 3. Reduzible und irreduzible Darstellungen, Charaktere, Orthogonalitätstheorem,

Projektionsoperatoren.

- 4. Symmetrie von Wellenfunktionen und Operatoren.
- 5. Auswahlregeln für Übergänge zwischen molekularen Zuständen.
- 6. Drehimpulse, Kommutatoren.

Teilnahmevoraussetzungen	Keine, aber die Kenntnis von Lehrinhalten, wie sie z.B. im Bachelor- modul QCCC vermittelt werden, wird vorausgesetzt. Das Modul kann nicht belegt werden, wenn bereits das Modul MPESP belegt wurde.				
Studienleistungen	Regelmäßige und aktive Teilnahme am Seminar und an den Übungen, erfolgreiche Bearbeitung der Übungsaufgaben.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreiche Bearbeitung der Übun	gsaufgaben.			
Duff	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts.

Literatur

A. Szabo, N. Ostlund, *Modern Quantum Chemistry*. Introduction to advanced electronic structure theory, Dover Publications, Inc., Mineola, **2000**.

D. M. Bishop, Group Theory and Chemistry, Dover Publications, Inc., New York, 1993.

Wahlpflichtmodul relativistische Quantenchemie (Rela)							Stand: 15.05.2018		
Studiengang: M. Sc	. Chemie						Modus: V	Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Dauer			Turnus	Studie	nsemester	
8	2	40	1 Semest	er	WiSe,	jedes 2. Jahr		3.	
Anmerkung: Findet im j	ährlichen We	echsel mit der	m Wahlpflichtm	nodul	Dynamik r	nit QM/MM-Verf	ahren (Dyn) s	statt.	
Lehrveranstaltunge	en		Тур		mfang SWS]	Arbeits- aufwand [h]	Präsenzz eit [h]	Gruppen- größe	
Relativistische Quai	ntenchemi	ie	V		2	90	30	30	
Relativistische Quantenchemie			Üb		1	45	15	30	
Relativistische Quai	ntenchemi	ie	PExp		6	105	75	15	
Modulverantwortli	iche:r	Prof. Dr. 0	hristel M. Marian						
Beteiligte Dozieren	de	Die Dozie	rende des In	stitu	ts für Th	eoretische Ch	nemie und		
		Compute	rchemie.						
Sprache		deutsch, englisch							
Weitere Verwendb	arkeit	Studiengang					Modus		
des Moduls		M. Sc. Wirtschaftschemie Wahlpflichtmod					chtmodul		
		M. Sc. Inf	ormatik				Wahlpflid	htmodul	
		M. Sc. Ph	ysik				Wahlpflio	chtmodul	

Studierende können nach erfolgreichem Abschluss des Moduls

- die grundlegenden Konzepte Relativitätstheorie wiedergeben,
- den Weg zur Dirac-Gleichung skizzieren und die Bedeutung ihrer Lösungen analysieren,
- den Weg zu ein- und zweikomponentigen Näherungen beschreiben,
- beurteilen, wann die Anwendung relativistischer Methoden notwendig ist,
- Ein- und Zweielektronen-Spin-Bahn-Operatoren gegenüberstellen,
- Übergangswahrscheinlichkeiten für spinverbotene Übergänge berechnen,
- Rechnungen mit den in der Arbeitsgruppe gängigen Programmen durchführen und interpretieren.

Inhalte

Vorlesung

- 1. Relativistische Effekte, Dirac-Coulomb-Gleichung, No-Pair-Näherung, Skalarrelativistische Effekte, Effektive Rumpfpotentiale.
- 2. Elektronische Spin-Bahn-Kopplung: Operatoren, Auswahlregeln, Spinabhängige Effekte.
- 3. Fluoreszenz- und Phosphoreszenzraten.

Praktikum

Forschungspraktikum zu Themen der Vorlesung nach individueller Vereinbarung.

Teilnahmevoraussetzungen	Keine, aber Kenntnisse, wie sie z.B. in den Vorlesungen "Quantenchemische Methoden für angeregte Zustände" und "Mathematische Methoden der Theoretischen Chemie" vermittelt werden, werden vorausgesetzt.				
Studienleistungen	Erfolgreiche Bearbeitung der Übungs- und Praktikumsaufgaben, Praktikumsprotokoll.				
Zulassungsvoraussetzung	Erfolgreicher Abschluss des Rela-Praktikums und erfolgreiche				
zur Modulprüfung	Bearbeitung der Übungsaufgaben.				
Duilfungen	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Mündliche Einzelprüfung	30-45	benotet		
Stellenwert der Note für die Gesamtnote 8/135					
Sonstige Informationen					
Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts.					

- M. Reiher, A. Wolf, *Relativistic Quantum Chemistry: The Fundamental Theory of Molecular Science*, Wiley-VCH, 2. Ed., Weinheim, **2009**.
- K. G. Dyall, K. Faegri, Introduction to Relativistic Quantum Chemistry, Oxford Univ Press, New York, 2007.
- C. M. Marian, "Spin-Orbit Coupling and Intersystem Crossing in Molecules", Wiley Interdisciplinary Reviews: Computational Molecular Science, <u>2(2012)</u> 187–203.
- C. M. Marian, "Spin-orbit coupling in molecules" in: *Reviews in Computational Chemistry* (Hrsg. K. Lipkowitz, D. Boyd), Wiley-VCH, Weinheim, 17 (2001), 99-204.

Wahlpflichtmodul Dynamik mit QM/MM-Verfahren (Dyn)								Stand: 15.05.2018	
Studiengang: M. Sc	. Chemie						Modus: V	Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Dauer			Turnus	Studie	nsemester	
8	2	40	1 Semest	er	WiSe,	jedes 2. Jahr		3.	
Anmerkung: Findet im j	ährlichen We	echsel mit der	m Wahlpflichtm	nodul	relativistis	che Quantencher	nie (Rela) sta	tt.	
Lehrveranstaltunge	en		Тур		mfang SWS]	Arbeits- aufwand [h]	Präsenzz eit [h]	Gruppen- größe	
Photodyn. mit QM/MM Verfahren			V		2	90	30	30	
Photodyn. mit QM/MM Verfahren			Üb		1	45	15	30	
Photodyn. mit QM/	MM Verfa	hren	PExp	6		105	75	15	
Modulverantwortli	iche:r	PD Dr. Oli	iver Weingar	t					
Beteiligte Dozieren	de	Die Dozie	ie Dozierende des Instituts für Theoretische Chemie und						
		Compute	rchemie.						
Sprache		deutsch/e	englisch						
Weitere Verwendb	Weitere Verwendbarkeit Studiengang						Modus		
des Moduls		M. Sc. Wirtschaftschemie					Wahlpflichtmodul		
		M. Sc. Informatik Wahlpflicht					htmodul		
		M. Sc. Ph	ysik				Wahlpflichtmodul		

Studierende können nach erfolgreichem Abschluss des Moduls

- die Grundlagen molekülmechanischer und quantenmechanischer Verfahren sowie deren Kombination in QM/MM Verfahren wiedergeben,
- erweitertes Wissen über quantenmechanische Verfahren zur Beschreibung angeregter Zustände vorweisen,
- die Bewegung von Molekülen auf Singulett-Potenzialflächen nachvollziehen,
- kombinierte quantenmechanische/molekülmechanische Berechnungen zur Photodynamik einfacher Modellsysteme durchführen.

Inhalte

Vorlesung:

- subtraktive und additive QM/MM-Verfahren.
- Molekülmechanische Methoden.
- Ensembles.
- Surface-Hopping-Dynamik auf Born-Oppenheimer-Flächen.
- QM-Methoden für angeregte Zustände.
- Nichtadiabatische Kopplung.
- Solvatation.
- Berechnung von Übergangswahrscheinlichkeiten.

Übungen: Bearbeitung von Übungsaufgaben zu den Themen der Vorlesung.

Praktikum: Forschungspraktikum zu Themen der Vorlesung nach individueller Vereinbarung.

Teilnahmevoraussetzungen	Keine, aber Kenntnisse, wie sie z.B. in den Vorlesungen "Quantenchemische Methoden für angeregte Zustände" und "Mathematische Methoden der Theoretischen Chemie" vermittelt werden, werden vorausgesetzt.					
Studienleistungen	Erfolgreiche Bearbeitung der Übungs- und Praktikumsaufgaben, Praktikumsprotokoll.					
Zulassungsvoraussetzung	Erfolgreicher Abschluss des Dyn-Praktikums und erfolgreiche					
zur Modulprüfung	Bearbeitung der Übungsaufgaben.					
Duilfungan	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	Mündliche Einzelprüfung	30-45	benotet			
Stellenwert der Note für die Gesamtnote 8/135						
Sonstige Informationen						
Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.						

- F. Jensen, Introduction to Computational Chemistry, Wiley-VCH, 3. Ed., Chichester, 2017.
- H. M. Senn, W. Thiel, QM/MM Methods for Biological Systems, Top. Curr. Chem. (2007) 268: 173–290.
- O. Weingart, Combined Quantum and Molecular Mechanics (QM/MM) Approaches to Simulate Ultrafast Photodynamics in Biological Systems, Curr. Org. Chem. (2017) 21: 586-601.

Simulation von Biomolekülen (BioSim)								Stand: 15.05.2018	
Studiengang: M. Sc. Chemie							Modus: Wa	hlflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester	
8	24	40	Block, 3 W	ochen'		WiSe	3	3.	
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Simulation von Bion	nolekülen		V	2		60	30	250	
Bio-Sim-Seminar	Bio-Sim-Seminar			1		45	15	30	
Bio-Sim-Praktikum			PExp	6		135	90	15	
Modulverantwortli	che:r	Prof. Dr. I	Prof. Dr. Birgit Strodel						
Beteiligte Dozieren	de	Prof. Dr. I	of. Dr. Birgit Strodel						
Sprache		deutsch,	englisch auf	Wunsch					
Weitere Verwendb	arkeit	Studiengan	g				Modus		
des Moduls	tschaftschemie				Qualifizierungsmodul				
	mie				Qualifizierungsmodul				
B. Sc. Biochemie						Qualifizierungsmodul			
	tschaftschemie			Wahlpflichtmodul					
		M. Sc. Bio	chemie				Wahlpflichtmodul		

Studierende können nach erfolgreichem Abschluss des Moduls

- Proteine und andere Biomoleküle mit der Software VMD visualisieren,
- die Theorie hinter Molekulardynamik(MD)-Simulationen nachvollziehen,
- MD-Simulationen von Proteinen mit der Software GROMACS durchführen und diese auswerten,
 - englischsprachige Publikationen über biomolekularen Simulationen verstehen und diese in einem Vortrag vorstellen.

Inhalte

Vorlesung:

- 1. Biomolekulare Kraftfelder.
- 2. Berechnung nichtkovalenter Wechselwirkungen.
- 3. Geometrieoptimierung.
- 4. Molekulardynamik (MD)-Simulationen: Theorie, MD mit dem Programm GROMACS, Auswertung von MD-Simulationen, Methoden zur Berechnung von freien Energien (z.B. Replica-Exchange-MD und Umbrella-Sampling-MD).
- 7. Monte-Carlo-Simulationen, inklusive globaler Optimierung.
- 8. QM/MM-Simulationen, mit Anwendungen auf Enzyme.

Seminar:

- 1. Analyse einer Publikation zum Thema biomolekulare Simulation und eigene Simulationen zu dieser Publikation
- 2. Vorstellen der Publikation und der eigenen Simulationsergebnisse in einem Seminarvortrag (30 Minuten, Powerpoint)

Computerpraktikum:

- 1. Einführung in Linux, die Benutzung des MD-Programms GROMACS, des QM/MM-Programms ChemShell und des Programms VMD zur Darstellung von Biomolekülen
- 2. Bearbeitung von praktischen Übungen zu den Themen der Vorlesung am PC unter Linux. Die Übungsaufgaben werden selbstständig bearbeitet.
- 3. Protokolle zu den Übungen. Die Protokolle werden korrigiert und besprochen.

Teilnahmevoraussetzungen	Keine, aber Kenntnisse wie sie z.B. im Bachelormodul QCCC vermittelt werden, werden vorausgesetzt.				
Studienleistungen	Bearbeitung von Übungen im Rahmen des Computerpraktikums inklusive Protokolle, Seminarvortrag.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Bio-Sin	n-Praktikums	5.		
Dullforn non	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur	120	benotet		
Stellenwert der Note für die Gesamtnote 8/135					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts. Wenn das Modul bereits als Qualifikationsmodul im Bachelorstudiengang gewählt wurde, ist eine Belegung als Wahlpflichtmodul im Masterstudiengang ausgeschlossen.

- 1. Skript zur Vorlesung
- 2. Fachbücher:
- T. Schlick, *Molecular Modeling and Simulation*. *An Interdisciplinary Guide*, Springer, 2. Ed., New York, **2010**.
- A.R. Leach, Molecular Modeling Principles and Applications, Prentice Hall, 2. Ed., Harlow, 2001.
- D. Frenkel, B. Smit, "*Understanding Molecular Simulation. From algorithms to applications*, Academic Press, 2. Ed., San Diego, **2002**.
- 3. Spezialliteratur zu Seminarthemen wird ausgegeben.

Spezialisierungspflichtmodule

Erläuterungen zur Platzvergabe in den Spezialisierungspflichtmodulen

Die Plätze in den Spezialisierungspflichtmodulen (Forschungsschulen) werden einmal jährlich zum Sommersemester zugewiesen.

Damit die Platzvergabe bis zum Beginn der Vorlesungszeit abgeschlossen werden kann, ist eine rechtzeitige Anmeldung erforderlich. Die Anmeldefrist wird vom Prüfungsausschuss festgesetzt und im Internet bekanntgegeben. Sie endet in der Regel eine Woche vor Vorlesungsbeginn. Bewerbungen, die nach Ablauf der Frist eingehen, werden nicht mehr berücksichtigt.

Die Zuteilung der Plätze erfolgt nach Ablauf der Bewerbungsfrist, sobald das gesamte Bewerberfeld feststeht.

Der Prüfungsausschuss stellt sicher, dass in den Forschungsschulen insgesamt genügend Plätze zur Verfügung stehen, um allen Studierenden des Bewerberfeldes einen Platz anbieten zu können. Allerdings kann das Platzangebot in einzelnen Schulen begrenzt sein, was ggf. eine Auswahl der Studierenden erfordert, die zu den jeweiligen Schulen zugelassen werden können.

Es wird angestrebt, bei der Platzzuteilung die individuellen Interessen der Studierenden soweit wie möglich zu berücksichtigen. Hierzu sollen bei der Anmeldung zu den Forschungsschulen drei Präferenzen gesetzt werden (1 = höchste Präferenz, 3 = niedrigste Präferenz). Sollte die Zahl der Anmeldungen die Zahl der zur Verfügung stehenden Plätze in einer Schule übersteigen, erfolgt die Zulassung nach der Bachelorgesamtnote.

Ist eine Zulassung zu der Forschungsschule, für die die Anmeldung mit der höchsten Präferenz versehen worden ist, nicht möglich, wird in einer der anderen Forschungsschulen ein Platz zugeteilt. Hierbei wird angestrebt, einen Platz in der Forschungsschule mit der nächst niedrigeren Präferenz zuzuweisen.

Studierende, die einem zugewiesenen Platz in einer Forschungsschule nicht annehmen, können daraus keinen Anspruch ableiten, dass sie zu einem späteren Zeitpunkt wieder einen Platz in dieser Forschungsschule erhalten.

Advanced Materials

Advanced Materials (AdMat-V)							Stand: 15.05.2018		
Studiengang: M. Sc. (Studiengang: M. Sc. Chemie							Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	ıfwand [h]	Daue	r		Turnus	Studien	semester	
9	2	70	2. Semeste	rhälfte		SoSe		2.	
Lehrveranstaltungen			Тур	Umfar [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
Anorganische neue N	/laterialier	า	V	1		54	15	30	
Moderne poröse Ma	terialien: I	MOFs	V	1		54	15	30	
Makromoleküle an G	renzfläche	en	V	1		54	15	30	
Moderne Farbstoffch	nemie		V	1		54	15	30	
Soft Matter System			V	1		54	15	30	
Modulverantwortlic	he:r	N.N.							
Beteiligte Dozierend	e	Prof. Dr. Christoph Janiak , Prof. Dr. Matthias Karg, Prof. Dr. Thomas J. J. Müller, Dr. Bernd Schmidt, Jun-Prof. Dr. Markus Suta, Dr. Moniralsadat Tabatabai, Dr. Vera Vasylyeva-Shor.					. Thomas J.		
Sprache		deutsch							
Weitere Verwendba	rkeit des	Studiengang					Modus		
Moduls		M.Sc. Wir	rtschaftscher	nie (ante	eilig)		Wahlpflicht	t	
Legacials and Vermotorson									

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- erworbene Kenntnisse und Methodenkompetenz auf dem Gebiet der chemischen Materialforschung anwenden,
- mit Schwerpunkt bei "Hybridmaterialien" bzw. "Hybridmaterial"-Komponenten Synthese und Charakterisierung neuer Materialien planen.

Inhalte

Anorganische Neue Materialien

- 1. Klassifizierung "Neuer Materialien".
- 2. Ausgewählte Synthesekonzepte und -verfahren: Sol-Gel-Verfahren, Precursormethoden, Solvothermalsynthesen).
- 3. Struktur-Eigenschaftsbeziehungen bei Anorganischen Materialien und Anorganisch-Organischen Hybridmaterialien.
- 4. 2D- und 3D-strukturierte Anorganisch-Organische Hybrid-materialien.

Moderne poröse Materialien am Beispiel der Metall-organischen Netzwerke (MOFs)

- 1. Definitionen und geschichtliche Entwicklung zu MOFs.
- 2. Vergleich mit Zeolithen, Strukturen und Aufbau von MOF-Prototypen.
- 3. Syntheserouten zu MOFs inklusive postsynthetische Modifizierungen.
- 4. mögliche Anwendungsgebiete und aktuelle Anwendungen von MOFs.

Makromoleküle an Grenzflächen

- 1. Klassifizierung Polymergrenzflächen.
- 2. Präparative Methoden und Anwendungen (Oberflächenbeschichtungen, Oberflächenpolymerisation, Polymeradsorption, kolloidale Wechselwirkungen).
- 3. Analytische Methoden (XPS, Reflektometrie, AFM, Zetapotential, Wetting).
- 4. Ausgewählte Anwendungen interaktiver und responsiver Polymerbeschichtungen.

Moderne Farbstoffchemie

1. Klassifizierung der Farbstoffe.

- 2. Farbe von Organischen Verbindungen.
- 3. Ausgewählte Farbstoffklassen (Polyene, Polymethine, Di- und Triarylmethine, Aza[18]annulene, Azofarbstoffe, etc.) –Synthese und Eigenschaften.
- 4. Ausgewählte Anwendungen (Organische Halbleiter und Feldeffekttransistoren, Organische Leuchtdioden, Organische Photovoltaik, Optische Schalter, Fluoreszenzfarbstoffe).
- 5. Ökologische und toxikologische Aspekte.

Soft Matter Systeme

- 1. Definition, Beispiele und Anwendungsbereiche von Soft Matter Systemen.
- 2. Polymerbasierte Soft Matter System (Synthese, Charakterisierung und Anwendung): a) Copolymere, b) Hydrogele.
- 3. Moderne Polymer-Hybrid-Systeme (Synthese, Charakterisierung und Anwendung).

Teilnahmevoraussetzungen	keine						
Studienleistungen	Aktive Teilnahme an den Vorlesungen.						
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Moduls AdMat-P.						
Duitforman	Prüfungsform	Dauer [min]	benotet/unbenotet				
Prüfungen	Klausur	120	benotet				
Stellenwert der Note für die E	Endnote 16/135						
Medienformen	Tafel, Projektor						

Sonstige Informationen

www.chemie.uni-duesseldorf.de/Faecher/Anorganische Chemie/Vorlesungen und Praktika

- U. Schubert, N. Hüsing, Synthesis of Inorganic Materials, Wiley VCH, 4. Ed., Weinheim, 2019.
- zu MOFs: VL-Präsentationen, Übersichtsartikel, Praktikumsskript.
- M. Kaneko, I. Okura, Photocatalysis. Science and Technology (Biological and Medical Physics Series), Springer, Berlin, 2002.
- H. Zollinger, *Color Chemistry. Syntheses, Properties, and Applications of Organic Dyes and Pigments*, Wiley-VCH, 3., rev. Ed., Weinheim, **2003**.
- F. Vögtle, Supramolekulare Chemie. Eine Einführung, Teubner, 2., überarb. und erw. Aufl., Stuttgart, 1992.
- H.-D. Dörfler, *Grenzflächen und kolloid-disperse Systeme*, Springer, Berlin, **2002**.
- M. T. Shaw, Introduction to Polymer Rheology, John Wiley & Sons, Hoboken, 2012.
- J. N. Israelachvili, Intermolecular and Surface Forces, Academic Press, 3. Ed., Burlington, 2011.

Advanced Materials (AdMat-P)								Stand: 15.05.2018	
Studiengang: M. Sc.	Studiengang: M. Sc. Chemie								
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studiens	semester	
7	2:	10	2. Semeste	rhälfte		SoSe	2	<u>2</u> .	
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe	
AdMat-Praktikum			Р	8		150	120	15	
AdMat-Seminar			Sem	2		60	30	30	
Modulverantwortli	che:r	N.N.							
Beteiligte Dozieren	de	J. Müller,	Dr. Bernd So	chmidt, J	un-P	. Matthias K rof. Dr. Mark /asylyeva-Sh	· ·	. Thomas J.	
Sprache Deutsch									
Weitere Verwendbarkeit Studiengan			ang				Modus		
des Moduls M. Sc. Wi			irtschaftschemie (anteilig)			Wahlpflichtmodul			
Lernziele und Kom	petenzen								

Studierende können nach erfolgreichem Abschluss des Moduls

- moderne Synthesemethoden auf dem Gebiet der neuen Materialien auswählen und anwenden,
- begleitende Analyseverfahren auswählen und die Analyseergebnisse deuten und dokumentieren,
- wissenschaftliche Ergebnisse kreativ präsentieren.

Inhalte

Praktikum:

Bevorzugt zur Thematik "Hybridmaterialien" können wahlweise forschungsnahe Projekte mit Schwerpunkten aus einem oder mehreren der Themenfelder des Vorlesungsverbundes "Neue Materialien" (siehe Modul AdMat) bearbeitet werden. Der Fokus liegt bei Auswahl und Einsatz materialklassenspezifischer Syntheseverfahren und/oder der fortgeschrittenen Nutzung analytischer Werkzeuge für die Eigenschafts- und Strukturcharakterisierung.

Seminar:

Zum Abschluss des Praktikums stellen die Teilnehmer eine ihrer Praktikumsaufgaben und die erzielten Ergebnisse im Kreis der Teilnehmer mit einer Kurzpräsentation vor.

Teilnahmevoraussetzungen	keine					
Studienleistungen	Teilnahme am Praktikum; Anfertigen von Protokollen, Seminar- vortrag					
Zulassungsvoraussetzung zur Modulprüfung	entfällt					
D."5	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	n unbenot					
Stellenwert der Note für die	Gesamtnote					

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF.

Literatur

Ausgewählte Versuchsvorschriften aus neueren Originalarbeiten zu den Themenkreisen "Anorganische Materialien und Anorganisch-Organische Hybridmaterialien", "Funktionspolymere, Hybridmaterialien und Nanocomposite".

U. a. Präparate aus T. J. J. Müller, U. H. F. Bunz (Hrsg.), Functional Organic Materials. Syntheses, strategies and applications, Wiley-VCH, Weinheim, **2007**.

Molecular and Biomolecular Catalysis

Molecular and Biomolecular Catalysis (MoBiCa-V)							Stand: 15.05.2018	
Studiengang M. Sc. Che	mie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
9	2	70	2. Semeste	rhälfte		SoSe	2	2.
Lehrveranstaltungen			Тур	Umfai [SWS	_	Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Grundlagen der hor	mogenen l	(atalyse	V	2		110	30	30
Grundlagen der Bio	katalyse		V	4		160	60	30
Modulverantwortli	iche:r	Prof. Dr. J	rof. Dr. Jörg Pietruszka					
Beteiligte Dozieren	ide		Prof. Dr. Christian Ganter, Prof. Dr. Thomas J. J. Müller					
Sprache	Prof. Dr. Jörg Pietruszka, Prof. Dr. Vlada Urlacher. deutsch					<u> </u>		
Weitere Verwendbarkeit Studiengang						Modus		
des Moduls			rtschaftsche	mie (ant	eilig)		Wahlpflicht	tmodul

Lernziele und Kompetenzen

Die Studierenden erwerben Kenntnisse und Methodenkompetenz in der Katalyse. Der Fokus liegt auf der Nutzung von Enzymen und ihrer Anwendung in der organischen Synthese. Analytische Werkzeuge für das praktische Arbeiten mit selektiven Katalysatoren werden an Fall-beispielen erläutert.

Inhalte

Grundlagen der homogenen Katalyse:

- Physikalisch-chemische Grundlagen der molekularen Katalyse.
- Prinzipien der metallorganischen Chemie (Formalismen, Liganden, Elementarreaktionen, Mechanismen)
- Hydrierungen.
- Hydroformylierung, -cyanierung, -silylierung.
- Polymerisationskatalyse.
- Kreuzkupplungen.
- Organokatalyse (Enamin-, Iminium-Katalyse, Stetter-Reaktion).

Grundlagen der Biokatalyse:

- Suche und Identifizierung neuer enzymatischer Aktivitäten.
- Rekombinante Enzyme.
- Technisch relevante Prozesse mit isolierten Enzymen und Ganzzell-biokatalysatoren.
- Protein-Engineering und –Immobilisierung.
- Anwendungen von Enzymen in der Synthese: Racematspaltung, C-O-Bindungen (Carbonsäurederivate, Epoxide, Glycoside), C-N-Bindungen (Nitrile, Amide, Transaminierung), C-C-Bindungen (Aldolreaktion, Acyloinkondensation, Cyanhydrine), Reduktionen (Ketone, Imine) und Oxidationen (C-H- und C=C-Bindungen, Alkohole, Amine, Carbonyle).

Teilnahmevoraussetzungen	keine						
Studienleistungen	Aktive Teilnahme an den Vorlesungen.						
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Moduls MoBiCa-P.						
Duitfungen	Prüfungsform	Dauer [min]	benotet/unbenotet				
Prüfungen	Klausur 120 benotet						
Stellenwert der Note für die	Gesamtnote 16/135						

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

Literatur

K. Faber, Biotransformations in Organic Chemistry. A textbook, Springer, 6., rev. and corr. Ed., Berlin, 2011.

- J. McMurry, T. P. Begley, *Organische Chemie der biologischen Stoffwechselwege*, Spektrum Akademischer Verlag, Heidelberg, **2006**.
- D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, Springer, 3., überarb. und erw. Aufl., Berlin, 2019.
- A. Berkessel, H. Gröger, *Asymmetric Organocatalysis*. *From Biomimetic Concepts to Applications in Asymmetric Synthesis,* Wiley-VCH, Weinheim, **2005**.

Molecular and Biomolecular Catalysis (MoBiCa-P)							Stand: 15.05.2018	
Studiengang M. Sc. Che	mie						Modus: Wa	ahlpflicht
ECTS-Punkte	Arbeitsau	fwand [h]	Daue	r		Turnus	Studien	semester
7	2:	10	2. Semeste	rhälfte		SoSe] :	2.
Lehrveranstaltungen			Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
MoBiCa-Praktikum			PExp	8		170	120	15
MoBiCa-Seminar			Sem	2	2 40		30	30
Modulverantwortl	iche:r	Prof. Dr	of. Dr. J. Pietruszka					
Beteiligte Dozieren	nde	Prof. Dr. 0	Prof. Dr. Christian Ganter, Prof. Dr. Thomas J. J. Müller					
		Prof. Dr. J	lörg Pietrusz	ka, Prof.	Dr. ۱	/lada Urlach	er.	
Sprache deutsch								
Weitere Verwendbarkeit Studiengang							Modus	
des Moduls		M. Sc. Wi	rtschaftsche	mie (ant	eilig)		Wahlpflichtmodul	

Die Studierenden erwerben praktische Kenntnisse und Methodenkompetenz in der Katalyse. Der Fokus liegt auf der Nutzung von Enzymen und ihrer Anwendung in der organischen Synthese. Analytische Werkzeuge für das praktische Arbeiten mit selektiven Katalysatoren werden an Fallbeispielen erläutert.

Inhalte

Praktikum:

- Synthese ausgewählter Katalysatoren (Pd-Katalysatoren, Thiazoli-umsalze).
- Ausgewählte metall- und organokatalysierte Reaktionen (z. B. Sonogashira-, Suzuki-Kupplung, Stetter-Reaktion).
- Durchführung einer Hydrierungskinetik.
- Synthesen von nichtnatürlichen Substraten für die Enzymkatalyse.
- Produktcharakterisierung mit Hilfe von Vergleichssubstanzen.
- Enantiomerenanalytik.
- Herstellung von rekombinanten Proteinen.
- Enzymatische Umsetzung im einphasigen und zweiphasigen System.
- Vergleich von Reaktionen mit Ganzzellbiokatalysatoren und isolierten Enzymen.

Im *Seminar* halten die Studierenden Vorträge über aktuelle Themen der molekularen und biomolekularen Forschung.

Teilnahmevoraussetzungen	keine					
Studienleistungen	Durchführung aller Praktikumsversuche, Anfertigung von Protokollen.					
Zulassungsvoraussetzung zur Modulprüfung	entfällt					
Duff	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen	unbenotet					
Stellenwert der Note für die	Gesamtnote					

Sonstige Informationen

Aktuelle Informationen finden Sie unter folgender Webadresse:

http://www.iboc.uni-duesseldorf.de/lehre

- K. Faber, Biotransformations in Organic Chemistry. A textbook, Springer, 6., rev. and corr. Ed., Berlin, 2011.
- J. McMurry, T. P. Begley, *Organische Chemie der biologischen Stoffwechselwege*, Spektrum Akademischer Verlag, Heidelberg, **2006**.
- D. Steinborn, Grundlagen der metallorganischen Komplexkatalyse, Springer, 3., überarb. und erw. Aufl., Berlin, 2019.
- A. Berkessel, H. Gröger, Asymmetric Organocatalysis. From Biomimetic Concepts to Applications in Asymmetric Synthesis, Wiley-VCH, Weinheim, **2005**.

Molecular Photonics and Excited-State Processes

Molecular Photonics and Excited-State Processes						Stand: 15.05.2018		
Studiengang: M. Sc. Chemie					Modus: Wahlpflicht			
ECTS-Punkte	Arbeitsau	fwand [h]	Dauer		Turnus		Studiensemester	
9	2	70	1 Seme	ster SoSe			2.	
Lehrveranstaltungen			Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
Quantenchemische Methoden für elektronisch angeregte Zustände			V	2		90	30	30
Mathematische Methoden der Theo- retischen Chemie			V	1		45	15	30
Präparative und spektroskopische Aspekte der organischen Photochemie			V	2		90	30	30
Moderne Farbstoffchemie			V	1		45	15	30
Modulverantwortli	che:r	Prof. Dr. Shirin Faraji						
Beteiligte Dozieren	de	Die Dozierenden des Instituts für Theoretische Chemie und Computer- chemie, Prof. Dr. Peter Gilch, Prof. Dr. Thomas J. J. Müller, PD Dr. Klaus Schaper.						
Sprache		deutsch/englisch						
Weitere Verwendba	arkeit	Studiengang Modus						
des Moduls								

Lernziele und Kompetenzen

Studierende können nach erfolgreichem Abschluss des Moduls

- die mathematischen Grundlagen der Quantentheorie wiedergeben,
- die Gruppentheorie auf Kernbewegungen, Molekülorbitale und Elektronenspins anwenden,
- entscheiden, welche Übergänge zwischen Zuständen erlaubt sind,
- Grundzüge der variations- und störungstheoretischen Näherungsverfahren herleiten,
- Methoden zur Berechnung angeregter Zustände korrekt beurteilen und auswählen,
- Umgebungseffekte in Berechnungen berücksichtigen,
- Wahrscheinlichkeiten für elektronische Übergänge berechnen,
- angeregte Zustände als elektronische Isomere erkennen,
- Bedeutung der Photochemie in Technologie und Industrie beschreiben,
- Photochemische Arbeitsweisen und Messtechniken erlernen,
- Chromophorklassen strukturell zuordnen und deren Absorptions- und Emissionseffizienz beurteilen,
- Synthesen von Chromophoren konzipieren, auswählen und diskutieren,
- die physikalischen zugrundeliegenden Phänomene ausgewählter Chromophoranwendungen korrekt beschreiben, diskutieren und in ihrer Effizienz evaluieren,
- Struktur-Eigenschafts-Beziehungen von Chromophoren erkennen, auswerten und diskutieren.

Inhalte

Vorlesung Quantenchemische Methoden für elektronisch angeregte Zustände

- Optimierung von Molekülorbitalen (HF, CASSCF, DFT).
- Variationsverfahren (CI, CIS, DFT/MRCI).
- Response-Methoden (TDHF, TDDFT, RICC2).
- Elektronenstrukturmethoden für angeregte Zustände.
- Störungstheoretische Verfahren (CASPT2).
- Umgebungseffekte auf elektronische Spektren.
- Dipolübergänge und Oszillatorstärken.
- Spin-Bahn-Kopplung, Phosphoreszenz,

Intersystem Crossing.

Vorlesung Mathematische Methoden der Theoretischen Chemie

- Mathematische Grundlagen der Quantenmechanik.
- Reduzible und irreduzible Darstellungen, Charaktere, Orthogonalitätstheorem, Projektionsoperatoren.
- Auswahlregeln für Übergänge zwischen molekularen
 Zuständen.
- Molekülpunktgruppen.
- Symmetrie von Wellenfunktionen und Operatoren.
 - Drehimpulse, Kommutatoren,
 Schiebeoperatoren.

Präparative und spektroskopische Aspekte der organischen Photochemie

- Absorption und Emission.
- Ratenkonstanten und Quantenausbeuten.
- Methodische Aspekte der präparativen Photochemie.
- Woodward-Hoffmann-Regeln in der Photochemie.
- Industrielle Anwendungen.
- Photolabile Schutzgruppen.

Moderne Farbstoffchemie

- Klassifizierung der Farbstoffe.
- Ausgewählte Farbstoffklassen (Polyene, Polymethine, Di- und Triarylmethine, Aza[18]annulene, Azofarbstoffe, etc.) – Synthese und Eigenschaften.
- Ökologische und toxikologische Aspekte.

- Nicht-strahlende Prozesse.
- Magnetfeldeffekte.
- Transferprozesse.
- Photoreaktionen von Carbonylverbindungen.
- Photolithographie.
- Farbe von Organischen Verbindungen.
- Ausgewählte Anwendungen (Organische Halbleiter und Feldeffekttransistoren, Organische Leuchtdioden, Organische Photovoltaik, Optische Schalter, Fluoreszfarbstoffe).

Teilnahmevoraussetzungen	Keine, aber Kenntnis von Lehrinhalten, wie sie z.B. im Bachelormodul QCCC vermittelt werden, werden vorausgesetzt. Gleichzeitige				
reilliaillievoraussetzungen					
	Teilnahme am Modul MPESP-P.				
Studienleistungen	Aktive Teilnahme an den Vorlesungen.				
Zulassungsvoraussetzung zur Modulprüfung	Erfolgreicher Abschluss des Moduls MPESP-P.				
Dullford and	Prüfungsform	Dauer [min]	benotet/unbenotet		
Prüfungen	Klausur	120	benotet		
Stellenwert der Note für die	16/135				

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts für Theoretische Chemie

- A. Szabo, N. Ostlund, *Modern Quantum Chemistry*. Introduction to advanced electronic structure theory, Dover Publications, Inc., Mineola, **2000**.
- B. O. Roos, P. O. Widmark, European Summerschool in Quantum Chemistry, Lund, 2007.
- D. M. Bishop, Group Theory and Chemistry, Dover Publications, Inc., New York, 1993.
- P. Klán, J. Wirz, Photochemistry of Organic Compounds. From Concepts to Practice, John Wiley & Sons Ltd, Chichester, 2009.
- H. Zollinger, *Color Chemistry. Syntheses, Properties, and Applications of Organic Dyes and Pigments*, Wiley-VCH, 3., rev. Ed., Weinheim, **2003**.

Molecular Photonics and Excited-State Processes (MPESP-P)							Stand: 15.05.2018	
Studiengang: M. Sc.	Chemie						Modus: Wahlpflicht	
ECTS-Punkte	Arbeitsau	fwand [h]	Dauer Tu			Turnus	Studiensemester	
7	2:	10	1 Semester		SoSe	2.		
Lehrveranstaltungen			Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe
MPESP-Praktikum			PExp	6		90	75	15
MPESP-Seminar			Sem	1		30	15	30
MPESP-Übungen			Üb	2		90	30	30
Modulverantwortliche:r Prof. Dr. S			rof. Dr. Shirin Faraji					
Beteiligte Dozierende Die Dozierende des Instituts für Theoretische Chemie und Comput chemie, Prof. Dr. Peter Gilch, Prof. Dr. Thomas J. J. Müller, PD Dr. k Schaper.					•			
Sprache		deutsch/englisch						
Weitere Verwendbarkeit Studiengan		g				Modus		
des Moduls								

Studierende können nach erfolgreichem Abschluss des Moduls

- die Inhalte des MPESP-Moduls in der Praxis sicher anwenden,
- eine Programmiersprache auf einfache praktisch mathematische Fragestellungen anwenden,
- mit aktueller wissenschaftlicher Literatur sicher umgehen,
- einen Vortrag über ein wissenschaftliches Thema halten.

Inhalte

Praktikum:

Im Rahmen des Moduls wird ein Programmierpraktikum angeboten, in dem Studierende die Grundzüge einer höheren Programmiersprache erlernen und sie praktisch auf einfache mathematische Fragestellungen aus dem Bereich der theoretischen Chemie anwenden.

Alternativ können in Absprache mit den Dozierende forschungsnahe Projekte aus den Bereichen Präpa-rative Photochemie, Spektroskopie oder Chromophorsynthese mit spektroskopischer Charakterisier-ung bearbeitet werden.

Seminar: In Zusammenarbeit mit den Dozierende werden aktuelle Originalarbeiten aus dem Themenbereich der Vorlesungen ausgewählt und von den Studierenden vorgestellt.

Übungen: Übungsaufgaben mit Hausaufgaben aus den Themen der Vorlesungen des Moduls MPESP.

Teilnahmevoraussetzungen	Gleichzeitige Teilnahme am zugehörigen Vorlesungsmodul MPESP.					
Studienleistungen	Aktive Teilnahme am Praktikum, Auswertung der Versuche, Protokolle, Seminarvortrag, Erfolgreiche Bearbeitung der Übungsaufgaben.					
Zulassungsvoraussetzung zur Modulprüfung	entfällt					
D	Prüfungsform	Dauer [min]	benotet/unbenotet			
Prüfungen			unbenotet			
Stellenwert der Note für die						

Sonstige Informationen

Aktuelle Informationen finden Sie auf ILIAS und im HIS-LSF und auf der Webseite des Instituts für Theoretische Chemie

Literatur

U. a. Präparate aus T. J. J. Müller, U. H. F. Bunz (Hrsg.), *Functional Organic Materials*. *Syntheses, strategies and applications*, Wiley-VCH, Weinheim, **2007**.

Aktuelle wissenschaftliche Aufsätze aus Fachzeitschriften.

Masterarbeit

Studiengang: M. Sc. Chemie ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester 25 700 6 Monate jedes Semester 4. Lehrveranstaltungen Typ Umfang [SWS] Arbeitsaufwand [h] Präsenzzeit [h] grö Masterarbeit 700 Modulverantwortliche:r Betreuer:in der Masterarbeit Betreuer:in der Masterarbeit Beteiligte Dozierende Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Unive Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache deutsch oder englisch Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
ECTS-Punkte Arbeitsaufwand [h] Dauer Turnus Studiensemester 25 700 6 Monate jedes Semester 4. Lehrveranstaltungen Typ Umfang [SWS] Arbeits-aufwand [h] Präsenzzeit Grup grö Masterarbeit 700 Modulverantwortliche:r Betreuer:in der Masterarbeit Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder of Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Unive Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache deutsch oder englisch Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Lehrveranstaltungen Typ Umfang [SWS] Arbeits-aufwand [h] Präsenzzeit [h] grö Masterarbeit Modulverantwortliche:r Beteiligte Dozierende Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder of Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Univer Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Lehrveranstaltungen Typ Umfang [SWS] aufwand [h] Präsenzzeit [h] grö Masterarbeit Modulverantwortliche:r Beteiligte Dozierende Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder of Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Unive Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Modulverantwortliche:r Beteiligte Dozierende Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder of Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Univer Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache deutsch oder englisch Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Beteiligte Dozierende Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder of Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Univer Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfu ausschuss Chemie. Sprache deutsch oder englisch Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Univer Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfur ausschuss Chemie. Sprache deutsch oder englisch Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
Weitere Verwendbarkeit des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema.					
des Moduls Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen.					
Lernziele und Kompetenzen Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen.					
Mit der Masterarbeit belegen Studierende die Fähigkeit, innerhalb einer vorgegebenen Frist ein chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaft zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen.					
chemisches Problem selbständig nach wissenschaftlichen Methoden zu bearbeiten, wissenschaftlich zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen.					
zu dokumentieren und öffentlich zu vertreten. Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
Inhalte Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
Die Inhalte der Masterarbeit sind abhängig vom gewählten Thema. Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
Die Pflichtmodule müssen erfolgreich absolviert und es müssen					
Teilnahmevoraussetzungen Die Pflichtmodule müssen erfolgreich absolviert und es müssen mindestens 82 Leistungspunkte erworben worden sein.					
Studienleistungen Einarbeitung in ein fachwissenschaftliches Problem inkl. Literaturrecherche. Anfertigung der schriftlichen Masterarbeit im Umfang von max. 100 Seiten.					
Zulassungsvoraussetzung zur Modulprüfung entfällt					
Prüfungen Prüfungsform Dauer [min] benotet/unbenote					
Schifftliche Abschlussarbeit behötet					
Stellenwert der Note für die Gesamtnote 36/135					
Sonstige Informationen					
Literatur					

Die verwendete Literatur ist abhängig vom gewählten Thema.

Mastervortrag							Stand: 15.05	5.2018	
Studiengang: M. Sc. Chemie							Modus: Pflicht		
ECTS-Punkte		fwand [h]	Dauer			Turnus	Studiensemester		
5	15	50	30min		iedes	Semester	4.		
Lehrveranstaltungen		Тур	Umfang [SWS]		Arbeits- aufwand [h]	Präsenzzeit [h]	Gruppen- größe		
Mastervortrag						150			
Modulverantwortli	che:r	Betreuer:	in der Masterarbeit						
Grup Düss		Gruppe der Düsseldorf; ausschuss C	Hauptamtlich im Studiengang Chemie in Forschung oder Lehre tätige Mitglieder der Gruppe der Hochschullehrerinnen und Hochschullehrer der Heinrich-Heine-Universität Düsseldorf; andere Personen benötigen die vorherige Zulassung durch den Prüfungsausschuss Chemie.						
•			n oder englisch						
	Weitere Verwendbarkeit		Studiengang						
des Moduls									
Lernziele und Kompetenzen									
Mit dem Mastervortrag belegen Studierende die Fähigkeit, die wissenschaftlichen Ergebnisse aus									
ihrer Masterarbeit vor einem Fachpublikum zu präsentieren und in einer Diskussion zu verteidigen.							teidigen.		
Inhalte									
Ergebnisse der Masterarbeit.									
Teilnahmevorausse	Teilnahmevoraussetzungen Die Masterarbeit muss beim Prüfungsamt eingereicht sein.								
Studienleistungen		Präsentation der Ergebnisse							
Zulassungsvoraussetzung zur Modulprüfung entfällt									
Prüfungen		Prüfungsform			Dauer [min]	benotet/	unbenotet		
		Vortrag mit Diskussion				30		otet	
Stellenwert der Note für die Gesamtnot			te			9/135			
Sonstige Informationen									
Literatur									